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Abstract Seymour and Varley [1] analyse certain media whose responses are governed by 
the nonlinear nondispersive wave equation, in which any two pulses traveling in opposite 
directions interact nonlinearly for a finite time when they collide but then part unaffected by 
the interaction. Clearer, when any two pulses are traveling in opposite directions meet and 
interact, they emerge from the interaction region unchanged by the interaction. This 
interaction is similar to those that occurs when two solitons collide. The main difference is 
that solitons are represented by waves of permanent form whose profiles are specific. The 
waves described by Seymour and Varley distort as they propagate, and are of arbitrary shape 
and amplitude. Since such media transmit waves that do not remember the interaction 
process, they are called DRIP media. 
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1. INTRODUCTION 

In this paper we analyse the properties of a system of coupled wave equations   
2 ( )tt x xxy A y y= ,                                        (1) 

3/2 ( )
x

dA A A
dy

= µ + ν ,                                    (2) 

that govern the motion of an heterogeneous string, where ( , )y x t  is the physical displacement, 
( )xA y a positive function representing the local speed of propagation, and ,µ ν  the material 

constants. If  ( )x xy y x= and ( ( )) ( )xA y x A x= , the above system of equations can be written under 
the form 

2 ( )tt xxy A x y= ,                                       (3) 
3/2 ( )x xxA A A y= µ + ν ,                                     (4) 

We show that: 
a. The waves described by (3) and (4) are dispersive and dissipative. 
b. The single bounded solution of (2) is given by    

                    
2

3 2 3 1 3
2

3 2 3 1 3

[ ( )sn ( )]
( )

1 [ ( )sn ( )]
x

x
x

e e e e e y
A y

e e e e e y
′λ + − − + δ

=
′+ ρ + − − + δ

,                   (5) 

http://rjm.journals.srmta.ro/
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with ,λ ρ  constants depending on ,µ ν , and ie , 1, 2,3i =  the solutions of the equation  

3
2 34 0y g y g− − = , with constants 2 3,g g  depending on ,µ ν , 

The solution (5) shows a cnoidal dependence of A  on xy . It is characterized by the 
dependence of the amplitude on the argument of sn .  

For a certain value of ,µ ν , for that 1m = , (
31

32

ee
ee

m
−
−

= ) the solution (6) becomes 

2
1 1 3 1 3

2
1 1 3 1 3

[ ( )sech ( )]
( )

1 [ ( )sech ( )]
x

x
x

e e e e e y
A y

e e e e e y
′λ − − − + δ

=
′+ ρ − − − + δ

.                   (6) 

This solution (6) shows a solitonic dependence of A  on xy . The solution (5) is also 
characterized by the dependence of the amplitude on the argument of sech . 

The interaction (collision) of two solutions such (5) or (6) has the solitonic properties: may 
propagate without change of form, being regarded as a local confinement of the energy of the wave 
field. At the collision each may come away with the same character as it had before the collision 
[2-4].  

c. The solutions of (3) depend on A  given by (5) or (6). Any two solutions of (3) traveling in 
opposite directions interact nonlinearly and the collision is certainly influenced by the properties of 
A . The conclusion is the solutions of (3) and (4) are expressed in terms of cnoidal or soliton functions 
and their interaction have the cnoidal or solitonic properties.  

The case of soliton-like interaction described by Seymour and Varley [1] in the section 4 and 5 
is explained due to a solitonic behaviour of A . For a cnoidal behavior of A  we do not know what 
happens. We must analyse the collision phenomenon in this case [2-4].   

2. THE LINEAR VIBRATING STRING 

Consider 1D string motion equation [5, 6] 

   02 =− xxtt ucu ,                                    (7)                                                                                        

with c a real positive number. 
Let x  range from ∞− to ∞ . For the transverse vibrations of a string λ/2 Tc =  where T  is 

the constant tension and λ  the mass per unit length at the position x . For the compressional 
vibrations of an isotropic elastic solid in which the density and elastic constants are functions of x  
only (laminated medium) 2 ( 2 ) /c = λ + µ ρ . For the transverse vibrations of such laminated solid 

2 /c = µ ρ .  The characteristics are given by c
dt
dx

±= , that are straight lines inclined to the axis at 

ϕtan=c . The D’Alembert solution of (7) is  

  )()(),( ctxgctxftxu ++−= ,                                (8)                                                                

where the functions RRgf →:,  are determined from the initial conditions attached to (7)  
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   ( ,0) ( ),u x x= Φ  ( ,0) ( )u x x
t

∂
= Ψ

∂
.                               (9) 

We have  

    
0

1 1( ) ( ) ( )d
2 2 2

x af x x
c

= Φ + Ψ α α +∫ ,                                (10) 

   
0

1 1( ) ( ) ( )d( )
2 2 2

x ag x x
c

= Φ − Ψ α α +∫ ,                              (11) 

with a  a real constant. 
The solution (8) describes two waves )( ctxf − and respectively )( ctxg + . 
Geometrically, the function ),( txu  can be represented as a surface in the space ( txu ,, ).  A 

section through this surface in the plane 0tt = , is ),( 0txuu =  and represents the profile of the 
vibrating string (a wave) at the time 0tt = . A section through the surface in the plane 0xx = , is 

),( 0 txuu =  and represents the motion phenomenon of the point 0x . 
The modified profiles of )( ctxf −  can be determined in the following way. Consider one 

observer with a system of coordinates )','( tx so that, at the time 00 =t , the observer occupies the 
position 0=x , and at the time t , the position ct , since it has a rectilinear motion with the velocity 
c . In the new coordinate system )','( tx , attached to the observer )','( ctxxtt −==  , the function 

)( ctxf −   is given , at any time 't  ,  by ).'(xf  The observer sees, at any moment of time the 
unchanged profile )(xf  at the initial time 0'00 == tt . This is way the function )( ctxf −  
represents a right travelling wave or a forward-going wave with the velocity c.  For a similar reason, 

)( ctxg +  represents a left travelling wave or a backward-going wave with the velocity c.  
As a consequence, both waves are not interacting between them and do not change their shape 

during the propagation. These waves can be superposed by a simple sum, because of the linearity of 
(7). These waves can be called solitary waves, for the reason they are not changing their shapea 
during propagation process, and do not interact one with the other (Fig. 1). 

If (7) is not linear (the case considered by Seymour and Varley [1] 

xxxtt yyAy )(2= ,                                 (12) 

the superposition principle is not valid.  
If 21 , yy  are two solutions of (12), the sum between them is not a solution of (12). 

The function ))(( xyA x  is a positive function that represents the local speed of the propagation. 
In the last years some nonlinear equations are intensive studied [2] 

Korteveg de Vries (KdV) equation  06 =+− xxxxt uuuu ; 

Boussinesq equation  01212)(24 2 =−+++ ttxxxxxxxxx uuuuuu ; 
Burgers equation  0=−+ xxxt uuuu ; 
Sine Gordon equation  uuu ttxx sin=− ; 

Nonlinear Schrodinger equation 02 =±+ uuuiu xxt . 
These equations admit solutions similarly with the waves described before, but having new 

properties that made the waves to have a particle behaviour: the waves are localized, bounded, and 
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tend in time to a constant. They can interact one to another without changing their identity (amplitude, 
velocity, shape). These special solutions are called solitons. 

The notion of soliton has appeared for the first time by Zabusky and Kruskal [7] in1965. 

                          
Fig. 1. Geometrical significance of the solitary wave. 

 
In the above paper, the authors have solved numerically the KdV equation, with conditions 
0→u  at ∞→x , and initial conditions given by two solitary waves, separated in space, that 

propagate in the same direction. In this way the authors obtain the characteristics of two soliton 
collision. 

If a nonlinear equation admits a solution expressed by a single solitary wave, it can be named 
soliton. But, if the equation admits as solutions more solitary waves, we do not know if these 
solutions are solitons. They can collide and after collision their shape can be modified by appearing 
some extra oscillations.  

 
3. DISPERSION AND DISSIPATION OF THE HARMONIC WAVES 

 
Let consider a harmonic wave  

  ( , ) expi( )v x t A kx t= −ω .                                (13) 

representing the solution of (7). 

 The real number k  is wave-number, the complex number ω  is the frequency, 2
k
π

λ =  is 

wavelength, and the real number A , the amplitude. 
The phase velocity is the speed of the phase t kxφ = ω − , it is the velocity of propagation of a 

surface with constant phase  
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  pc
k
ω

= ,                                  (14) 

the group velocity is the speed of a volume 

    d
dgc
k
ω

= .                                   (15) 

Introducing (13) into (7) we obtain the dispersion relation 
   ( , ) 0F kω = .                                    (16) 

If ω  is real, we say that have the dispersion of waves, if the phase velocity depends on the 
wave-number. In the case of the linearised KdV equation 

     6 0t x xxxu u u− + = ,                                   (17) 

the dispersion relation is 

 3 0k kω+ + = .                                    (18) 

When Re const.
k
ω
=  the waves are nondispersive, and for Im 0

k
ω
= the waves are 

nondissipative. 
The phase velocity 21pc k= − −  depends on the wave-number and then we have the dispersion 

phenomenon.  The group velocity 21 3gc k= − −  differs by the phase velocity for 0k ≠ , and in 
consequence the components of waves scatter and disperse in the propagation process.   

Ife ω  is complex Re Im , Im 0iω = ω+ ω ω  , we say we have dissipation of waves.  
The solution in this case is  

( , ) exp( Im )expi( Re )v x t A t kx t= ω − ω ,                      (19) 

and the amplitude is exponential decreasing at t →∞ . 
For the linearised Burgers equation 

                             0t x xxu u u+ + = ,                                     (20) 

the dispersion relation is 
2ik kω = − .                                       (21) 

The phase velocity of the harmonic waves  
2( , ) exp( )expi ( )v x t A tk k x t= − − , 

is 1pc = , and the group velocity, 1 2gc ik= − . 

The dissipation appears because 2Im kω = −  is negative for any real k . 
In conclusion, the KdV equation is dispersive due to the term xxxu , and Burgers equation is 

dissipative due to xxu . 
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3. THE NONLINEAR VIBRATING STRING 
 

Consider the equation (12)  
2 ( )tt x xxy A y y= ,                                     (22) 

that can governs the motion of an heterogeneous string, where y  is  the physical displacement, and 
( )xA y  is a positive function representing the local speed of propagation and verifies  

3/2d ( )
d x

A A A
y

= µ + ν .                                  (23) 

Since 

3/2dd d ( )
d d d

x
xx

x

yA A A A y
x y x
= = µ + ν ,                            (24) 

we obtain a coupled partial nonlinear differential equations for ( , )y x t and ( )A x  

         2 ( )tt xxy A x y= ,                                       (25) 
3/2 ( )x xxA A A y= µ + ν .                                  (26) 

The characteristics are given by d
d
x A
t
= ± , which equations define two congruences of curves in 

the ( , )x t  plane. 
1) First step is to straighten the characteristics of (25) for geometrical representation in a 

space-time plane. To do this we define the transformation [5, 6] 

   
0

d( )
( )

x zx u x
A z

→ = ∫  .                                    (27) 
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2) From (3.4) we obtain 

3) 0u
tt uu u

cy y y
c

− + = ,  ( ( )) ( )c u x A x= .                                          (28) 

4) The function ( )c u  is the transformed local speed. 
5) We have taking into account that  

d 1
d u
y y
x c
= ,  

and   
2

2 2 2

d 1 1
d

y
uu u

cy y y
x c c c

= − . 

Strictly speaking we should not use the same symbols y  in (28), because the function ( , )y x t  
of (25)-(26) is not the same function as the ( , )y u t of (28), but this is not likely to cause confusion if 
we remember that y  may be regarded as a physical quantity in terms of ( , )x t  or ( , )u t . 

The linearized form of (28) is 

0tt uu uy y y− + =  .                                   (29) 

Introducing the harmonic wave ( , ) expi( )y u t A ku t= −ω into (29), we obtain the dispersion 
relation 

2 2ik kω = + ,                                      (30) 
or 

i 11 i
2

b
k k kb
ω
= + = + , 

21
2

k kb
k

− + +
= − ,                 (31) 

The phase velocity of the harmonic waves  

( , ) exp( )expi ( )
2

ty u t A tkb k u
kb

= − , 

is  

2

1 1
2 2 ( 1 )

pc
kb k k k

−
= =

− + +
 

and depends on k .  
In conclusion, the equation (25) is dispersive and dissipative. 

 
In a space-time plane in which u  and t  are Cartesian coordinates, the characteristics are 

d 1
d
x
t
= ± , and are straight lines inclined to the axis at 045 . Let show this more clearly. 

We can change the variable and obtain for (28) another form. Let 
      ( , ) ( , ) ( )y u t v u t w u= ,                                (32) 

where w  is unspecified. 
Then                       
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tt tty v w= , u uy v w vw′= + , 2uu uu uy v w v w vw′ ′′= + + . 

The eq. (3.7) becomes, on division by w  

2 2tt uu uv v kv hv− = + ,                               (33) 

where 
22 w ck
w c
′ ′

= − ,  /2
/

w w wh
w c c
′′ ′

= −
′

 

Let choose w  to have 0k =  

     w c= ,  y v c= .                              (34) 

Then 
 

21 32 ( )
2 4

c ch
c c
′′ ′

= − +  .                              (35) 

Equation (28) becomes 

2tt uuv v hv− = .                                   (36) 

We see that the characteristics are straight lines inclined to the axis at 045 . 
 

 

4. BOUNDED SOLUTIONS OF THE EQUATION 3/2d ( )
d x

A A A
y

= µ + ν  

Consider the equation 

         3/2d ( )
d x

A A A
y

= µ + ν ,                               (37) 

written under the form 
2 3 2( )A A A′ = µ + ν ,                              (39) 

where d
d
AA
e

′ =  and xe y= . 

Differentiating (38), it can be written in the form 
2 3 4

2 3 4A a A a A a A′′ = + + ,                         (40) 

where  
2

2 1.5a = µ , 3 4a = µν , 2
4 2.5a = ν  ,                (41) 

and  0ia > , 2,3, 4i = . 
We assume the solution of (4.3) in the form [2] 
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( )
1 ( )

P eA
P e

λ
=

+ρ
,                                (42)            

where  0λ ≠  and  0ρ ≠  are arbitrary real constants, and ( )P e  is the Weierstrass elliptic function 
satisfying the differential equation [2-4, 8, 9] 

2 3
2 34P P g P g′ = − − ,                              (43) 

with two invariants 2g  and 3g  which are assumed to be real and satisfy    

                         3 2
2 327 0g g− > .                                  (44) 

Substituting (41) into (39) we obtain four equations for the four unknowns λ ,ρ , 2g  and 3g  
2 2 2 3 4

2 3 42 a a a− λρ = λ ρ + λ ρ+ λ ,                          (45) 
2 3

2 34 2a aλρ = λ ρ+ λ ,                              (46) 

        2 2
2 26 1.5 g aλ + λρ = λ  ,                             (47) 

         2
2 32 0g gλρ + λρ = .                                (48) 

From (44) multiplied by 2 and (45) multiplied by ρ  we have 

  2 2 2
4 3 2(2 3 4 ) 0a a aλ ρ ξ + ξ + = ,                        (49) 

with λ
ξ =

ρ
. We are interested in real solutions of (49).  

So, the condition 

                   2
3 2 49 32 0a a a∆ = − > ,                              (50) 

with taking account of (40), is always satisfied because 2 224 0∆ = µ ν > .  
The solutions of (49) are 

3
1,2

4

3 2 6 ( 6 6)
4 5

a
a

− ± µν µ − ±
ξ = =

ν
 .                    (51) 

Therefore, there are always real valued solutions λ ,ρ , 2g  and 3g  for (44)-(47) given by 

     
2 3

4
(2 )a a

ρ =
ξ + ξ

,                               (52) 

        λ = ξρ ,                                   (53) 

          2
2 2

6
1.5
ag λ −

=
ρ

,                                 (54) 

              2
3 2

gg = −
ρ

 .                                   (55) 

The condition (43) becomes, by using (55) and then (54) 
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2

2 2
2 2 22 2

27 4 43( ) 0
4 4

g g g µ −
− = >

ρ ρ
 .                      (56) 

The condition (56) is satisfied if 
24 43 0λµ − >  .                               (57) 

The condition (4.20) can be written under the form 
2 2

2 2

16 113 17243 0
3 4 3 4

µ − µ − µνξ
− = >

µ + µνξ µ + µνξ
. 

The numerator 2113 172− µ − µνξ  is always positive, for both negative solutions of ξ  given by 
(51), it is 2 (59 6 / 5) 0µ ± > . But the denominator 23 4µ + µνξ  is positive only for the solution 

( 6 6)
5

µ − +
ξ =

ν
, and has the value

2 ( 9 4 6)
5

µ − + . 

So, we consider only the solution 

3

4

3 2 6 ( 6 6)
4 5

a
a

− + µν µ − +
ξ = =

ν
 .                          (58) 

So, under the condition stated above, the exact periodic solutions can be written as 

2 3

2 3

( ; , )( )
1 ( ; , )

x
x

x

P y g gA y
P y g g

λ + δ
=

+ρ + δ
 ,                              (59) 

where δ is an integration constant of  (42), and 2g , 3g , λ  and ρ  are given by (52)-(55). 
The exact bounded periodic solution can be obtained by replacing the Weierstrass elliptic 

function by the Jacobean elliptic sine function using the formula [9] 

  2
2 3 3 2 3 1 3( ; , ) ( )sn ( )x xP y g g e e e e e y ′+ δ = + − − + δ ,               (60) 

where ′δ  is an arbitrary real constant, and 321 ,, eee  are real roots of the equation  

 04 21
3 =−− gygy  

with 321 eee >> . From 2 2sn 1cn + =  we can express (60) in term of the cnoidal function cn . 
Thus, the exact bounded periodic solution of (39) is 

    
2

3 2 3 1 3
2

3 2 3 1 3

[ ( )sn ( )]
( )

1 [ ( )sn ( )]
x

x
x

e e e e e y
A y

e e e e e y
′λ + − − + δ

=
′+ ρ + − − + δ

.                     (61) 

 

5. THE SOLITON WAVE SOLUTIONS OF EQUATION 3/2d ( )
d x

A A A
y

= µ + ν  

 
The modulus m  of the Jacobean elliptic function is given by  
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31

32

ee
ee

m
−
−

=  .                                   (62) 

The function cn is defined as 

2
0 1 sin

dv
m

ϕ θ
=

− θ
∫ , cn( , ) cn cosv m v= = ϕ . 

If m = 0 then v =ϕ  and cn = cos.  The quantity ϕ  is named amplitude  of v  ( )am vϕ =  and 

it is often used the notation 2dn 1 sinv m= − ϕ . For m =1 we have cn v = sech v.  Thus, the cnoidal 
solution becomes a soliton wave for m = 1. 

The complete elliptic integral of the first kind is defined as 
/2

2
0

( )
1 sin

dK m
m

π θ
=

− θ
∫ . 

It is clear that (0)
2

K π
=  and (1)K = ∞ . The period of cosϕ  is 2π , so the period of the 

function  cn  is 
/2

2
0

4 4 ( )
1 sin

d K m
m

π θ
=

− θ
∫ . 

The solitary wave is a periodic wave with infinite period and it is obtained when the modulus of 
the Jacobean elliptic function is equal to unity. So, in the soliton wave limit 1 2e e= . The quantities 

321 ,, eee  are the roots of the equation 04 21
3 =−− gygy  , 1 2 3 0e e e+ + = . 

The soliton wave solutions of (39) can be written as 
2

1 1 3 1 3
2

1 1 3 1 3

[ ( )sech ( )]
( )

1 [ ( )sech ( )]
x

x
x

e e e e e y
A y

e e e e e y
′λ − − − + δ

=
′+ ρ − − − + δ

 .                         (63) 

 
 

5. THE SOLUTIONS OF xxtt yxAy )(2=  

 
Consider the system (25) and (26) for ( , )y x t and ( )A x       

  2 ( )tt xxy A x y= ,                              (64) 
3/2 ( )x xxA A A y= µ + ν .                              (65) 

We know that ( )xA y is expressed as a periodic solution of cnoidal form (61) or soliton form 
(63).  

The amplitude 1 3( )e e− of the cnoidal solution 2
1 3 1 3( )sn ( )xe e e e y ′− − + δ , or of the soliton 

solution 2
1 3 1 3( )sech ( )xe e e e y ′− − + δ  is related to the velocity 1 3e e− of the wave. Therefore, 

the media described by ( )xA y  are dispersive. 
If consider that ( )xA y satisfies an equation of the form (37), then ( )xA y  is given by (61) or 

(63) with ,λ µ  prescribed. 
We show that (64, 65) predict pulses travelling in opposite directions expressed in terms of 
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cnoidal or soliton pulses.  

Consider the initial-value problem with 

 ( ,0) ( )y x f x= , ( ,0) ( )ty x g x= ,                      (66) 

with f and g  prescribed, and boundary conditions 

const.A =  for x →±∞  .                         (67) 

Firstly, consider the first equation (64) 
2 ( )tt xxy A x y= .                           (68) 

Let again consider the transformation (27) 

   
0

d( )
( )

x zx u x
A z

→ = ∫  .                       (69) 

that yields to (28) 

0u
tt uu u

cy y y
c

− + = , ( ( )) ( )c u x A x= .                (70) 

Equation (70) can be written in the form [5, 6] 

          d ( ) ( )
d

v t Lv t
t

= ,                          (71) 

where 

u

t

y
v

y
 

=  
 

, 
0

2 0
u

u

L
∂ 

=  ∂ − γ 
, 2 ( ) ucu

c
γ = .               (72) 

We calculate ( )v t by a sequence of linear transformations that reduce ( )v t  to a perturbation of 
the pulse [5]. 

For this we define the energy of the string  
2 21 d

2 ( )
u ty yE u
c u

∞

−∞

+
= ∫ ,                      (73) 

and take a point v in the phase-space ( , )u ty y  

q
v

p
 

=  
 

,  ( ) ( ,0)uq u y u= ,  ( ) ( ,0)tp u y u= .                  (74) 

The inner product is derived from the energy quadratic form (73)  

   1 1
1 2 1 2, ( , )v v C v C v− −< >=  , 

( ) 0

0 ( )

c x
C

c x

 
=   
 

,                (75) 

   1 2 1 2 1 2
1( , ) [ ( ) ( ) ( ) ( )]
2

v v q u q u p u p u du
∞

−∞

= +∫ .                     (76) 
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The operator L  is screw-symmetric with respect to the inner product (75) and so there exists 
a one-parameter group ( )V t  of orthogonal transformation determined by 

d ( ) ( )
d

V t LV t
t

= ,  (0) 1V = ,                    (77) 

so that ( ) ( )v t V t v=  is a solution of (71).  
We base on the fact that 

d exp( ) exp( )
d

tL L tL
t

= , 

where  
2 3

exp ... lim ( )
2! 3!

m
m

L L LL E L E
m→∞= + + + + = + , 

with E  is the unit matrix, and det(exp ) exp( )L trL= . Since 0trL = , we have det(exp ) 1L = .  
Also we have exp( ) ( )t x T t− ∂ =  with ( )T t  the right translation by t   

[ ( ) ]( ) ( )T t f x f x t= − , 

and exp( ) ( )t x T t′∂ =  with  

                            ( ) ( ) ( )T t T t f x t′ = − = + , 

the left translation by t . 
The method is based on the decomposition of the phase-space ( , )u ty y into a pair of 

complementary subspaces. This induces a decomposition of each initial datum into a forward 
propagating part and a backward-propagating part.  

In the homogeneous case ( 0)γ = , the equation (i) is reduced to 0tt uuy y− =  and the solution 
are expressed as a sum of two waves ( )f x t−  and ( )f x t+  that propagate independently. In the 
heterogeneous case the both pulses are coupled by 0γ ≠  considered as a perturbation.  

So, we take  
1 1( ) ( )V t CR V t RC− −=  , ( ) exp( )V t tL=  .                   (78) 

1 1L CR LRC− −=  , 
u

L
u

−∂ −γ 
=  γ ∂ 
 .                      (79) 

and 

1 2
2

1 2
2

R

 − 
 =
 
 
 

.  

It results that 1 1( ) ( )V t RC V t CR− −= , 1 1L RC LCR− −= . 
We see that L  can be written as a sum of  two operators to separate the contribution of the 

coupling term 0γ ≠   
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 0L L= +Γ  ,  0

0
0
u

L
u

−∂ 
=  ∂ 

 , 
0

0
−γ 

Γ =  γ 
.                   (80) 

 
In the homogeneous case we have 0Γ = and  

 
( ) 0

( ) ( ), ( )
0 ( )

T t
V t U t U t

T t
 

= =  ′ 
   ,                      (81) 

where ( )T t  is right translation by t  

 [ ( ) ]( ) ( )T t f s f s t= − ,                          (82) 

And ( ) ( )T t T t′ = − is left translation by t . 

The initial conditions (66) can be written under the form 

( ,0) ( )y u u= φ , ( ,0) ( )ty u u= ψ .                        (83) 

For 0Γ =  the solution of 0tt uuy y− =  is written as the D’Alembert formula 

1 1( , ) [ ( ) ( )] ( )
2 2

u t

u t

y u t u t u t z dz
+

−

= φ + + φ − + ψ∫  .                     (84) 

Our aim is to obtain a similar formula for the inhomogeneous case 0Γ ≠ . 
For this we use the well-known perturbation formula [11] 

0

( ) ( ) ( ) ( )
t

V t U t U t s V s ds= + − Γ∫                             (85) 

From this we can obtain an infinite series for ( )V t by an iteration scheme 

( 1) ( )

0

( ) ( ) ( ) ( )
t

n nV t U t U t s V s ds+ = + − Γ∫    ,  (0) ( ) ( )V t U t=  .         (86) 

We take account that ( ) exp( )V t tL= from (78) maps forward-going data into forward-going 
data and backward-going data. So, we write 

( ) ( )
( )

( ) ( )
FF FB

BF BB

V t V t
V t

V t V t
 

=  
 

 



 

 .                               (87) 

Here, FFV maps forward-going data into forward-going data, FBV  maps forward-going data 
into backward-going data, BFV  maps backward-going data into forward-going data and BBV maps 
backward-going data into backward-going data.  

From (81) 2 and (86) we obtain for FFV  

1

1 1 2 2 1 2
0 0

( ) ( ) ( ) ( ) ( )d d .....
tt

FFV t T t T t t T t t T t t t′= − − γ − γ +∫ ∫                  (88) 
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The first term in (88) is simply translating a forward-going datum into a forward direction. The 
integrant  1 1 2 2( ) ( ) ( )T t t T t t T t′− γ − γ  translate a forward-going datum in the forward direction from 
time zero to time 2t  when it is reflected. On reflection it is multiplied by the local reflection 
coefficient γ , then translated backwards from time 2t  to time 1t , when it is reflected again, 
multiplied by γ  and translated forwards from time 1t  to time t . So, the second term in (88) 
represents the contribution to the forward-going disturbance from all possible double reflections.  
The following terms in (88) consider third reflections and so on. 

Knowing this, it is easy to write  

1 2

1 1 1
0

1 1 2 2 3 3 1 2 3
0 0 0

( ) ( ) ( )

( ) ( ) ( ) ( ) .....

t

FB

t tt

V t T t t T t dt

T t t T t t T t t T t dt dt dt

′= − γ −

′ ′− − γ − γ − γ +

∫

∫ ∫ ∫



     (89) 

1 2

1 1 1
0

1 1 2 2 3 3 1 2 3
0 0 0

( ) ( ) ( )

( ) ( ) ( ) ( ) .....

t

BF

t tt

V t T t t T t dt

T t t T t t T t t T t dt dt dt

′= − − γ −

′ ′− − γ − γ − γ +

∫

∫ ∫ ∫



    (90) 

1

1 1 2 2 1 2
0 0

( ) ( ) ( ) ( ) ( ) .....
tt

BBV t T t T t t T t t T t dt dt′ ′ ′= − − γ − γ +∫ ∫                 (91) 

 
Now, from (78), (87) and (89)-(91) we have 

11 12

21 22

( ) ( )
( )

( ) ( )
V t V t

V t
V t V t
 

=  
 

 ,                            (92) 

with 

                         11
1 1( ) [ ( ) ( ) ( ) ( )]
2 FF BB FB BFV t c V t V t V t V t

c
= + + + , 

                         12
1 1( ) [ ( ) ( ) ( ) ( )]
2 BB FF FB BFV t c V t V t V t V t

c
= − + − , 

             21
1 1( ) [ ( ) ( ) ( ) ( )]
2 BB FF BF FBV t c V t V t V t V t

c
= − + −  ,                 (93) 

                         22
1 1( ) [ ( ) ( ) ( ) ( )]
2 FF BB FB BFV t c V t V t V t V t

c
= + − − . 

Taking account of the initial data (83) we have 

1 1( , ) ( )[ ( ) ( ) ( ) ( )] ( )
2 ( )

1 1( )[ ( ) ( ) ( ) ( )] ( )
2 ( )

t BB FF BF FB

BB FF BF FB

y u t c u V t V t V t V t u
c u

c u V t V t V t V t u
c u

′= − + − φ +

+ + − − ψ
          (94) 
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and 

1
0

1
0

1 1( , ) ( ) ( ) [ ( ) ( ) ( ) ( )] ( )
2 ( )

1 1( ) [ ( ) ( ) ( ) ( )] ( )
2 ( )

t

BB FF BF FB

t

BB FF BF FB

y u t u c u V t V t V t V t u dt
c u

c u V t V t V t V t u dt
c u

′= φ + − + − φ +

+ + − − ψ

∫

∫
     (95) 

For ( ) 0c u′ = , we obtain 

1 1 1 1 1 1
0 0

1 1( , ) ( ) [ ( ) ( )] ( ) [ ( ) ( )] ( )
2 2

t t

y u t u T t T t u dt T t T t u dt′ ′ ′= φ + − φ + + ψ∫ ∫  .     (96) 

After integration by parts and a change of variable (96) yields to D’Alembert formula (84). 
In conclusion, from (95) we see that the solution of  

2 ( )tt xxy A x y= , 

is expressed in term of the  

( ) ( )c u A x= , 

where  

0

( )
( )

x dzx u x
A z

→ = ∫ , 

and  

( ) ( ( ))xA x A y x= , 

verifying the equation 

                         
2

3 2 3 1 3
2

3 2 3 1 3

[ ( )sn ( )]
( )

1 [ ( )sn ( )]
x

x

e e e e e y
A x

e e e e e y
′λ + − − + δ

=
′+ ρ + − − + δ

,                  (97) 

or 

                       
2

1 1 3 1 3
2

1 1 3 1 3

[ ( )sech ( )]
( )

1 [ ( )sech ( )]
x

x

e e e e e y
A x

e e e e e y
′λ + − − + δ

=
′+ ρ + − − + δ

 .                 (98) 

So, the solutions are expressed in term of cnoidal (or soliton) waves.  
Therefore, we can emphasis that the collisions between such solutions have a cnoidal or soliton 

behavior. The applications of the theory presented in this paper can be found in [15, 16]. [17] 
In [17], the effect of hysteresis on the wave propagation in DRIP media is discussed for a simple wave 

profile ( ) sechf x x= . This is the case of interaction of two pulses having a soliton profile, travelling in a DRIP 
medium.   
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Fig.2.  Profiles of waves without hysteresis against x  for several t  [17]. 

 
Fig. 2 illustrates the case of interactions without hysteresis in DRIP media. From this figure we see that, 

in contrast to the theory of solitons, these waves move in opposite directions, interact and emerge unaffected 
by the interaction. In the interaction area no coupling between waves is visible. This suggests that the waves 
may be regarded individually. Speaking from a physical viewpoint, this interaction requires that the energy of 
each field is carried individually without any transfer of energy between fields.   

In fig. 3, the interaction region exhibits the coupling between waves. Therefore, the waves may not be 
regarded individually. The coupling of waves can be explained by the energy transfer between waves. This 
property may be of the transmitting medium rather than of the particular wave profiles [17]. 
 

 
Fig. 3.  Profiles of waves with hysteresis against x  for several t  [17]. 

 
 

 

6. CONCLUSIONS 
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The waves described by Seymour and Varley distort as they propagate, and are of arbitrary 

shape and amplitude. Since such media transmit waves that do not remember the interaction process, 
they are called DRIP media. Seymour and Varley [1] analyse DRIP Media whose responses are 
governed by the nonlinear nondispersive wave equation, in which any two pulses traveling in 
opposite directions interact nonlinearly for a finite time when they collide but then part unaffected by 
the interaction. When any two pulses are traveling in opposite directions meet and interact, they 
emerge from the interaction region unchanged by the interaction. This interaction is similar to those 
that occurs when two solitons collide. The main difference is that solitons are represented by waves of 
permanent form whose profiles are specific.  
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