
 

 

 

Romanian Journal of Mechanics 
 Volume 1, Issue 1/2016, pp 3-12, ISSN 2537 - 5229, rjm.journals.srmta.ro  

 

DETERMINATION OF DYNAMIC YOUNG’S MODULUS FOR STEEL ALLOYS  

Rodica IOAN
*,**

, Ligia MUNTEANU
*

, Dan DUMITRIU
*

  

*
 Institute of Solid Mechanics, Romanian Academy 

**
 University Spiru Haret from Bucharest 

 

Corresponding author: Rodica IOAN, E-mail: rodicaioan08@yahoo.com 

Abstract This paper presents an inverse problem for determining the dynamic Young’s 
modulus for steel alloys and its variation with temperature. The theory is based on the 

Landau-Murnaghan constitutive law coupled with the longitudinal and flexural resonance 

methods. The results show that the Young’s modulus varies in a complex way with 

temperature, in agreement with experimental results.       
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1. INTRODUCTION 

The variation with temperature of the Young’s modulus E  is not only a source of knowledge 

for the complex behaviour of materials, but also for understanding the structure-property relationship 

[1]. At high temperatures, the creep-failure tests become improper for evaluation the strength [2, 3] 

because the variation with temperature of the modulus E  is intimately related to the internal 

structure of materials at atomic and microstructural levels.  

In this paper, the nonlinear behaviour of the steel alloys is described by using the Lagrangian 

description where the state before deformation is used as a reference, and Landau-Murnaghan (LM) 

finite deformation theory for the unidirectional deformed isotropic solid [4-7] coupled with the 

resonance methods. By choosing the LM model it is possible to describe some features unknown in 

linear media such as the excitation of transverse component of the longitudinal wave propagating in 

structural steel alloys and subharmonic generation of waves.  

Let us denote ( , )u v  the displacement vector, and ( , , )x y t  a point of observation in space and 

time. The equations of motion of a nonlinear elastic LM medium are given by 

2

1 1ȡω 0u F R   ,                             (1) 

 
2

2 2ȡω 0u F R   ,                             (2) 

where ω  is the circular frequency, ȡ  the density, and 

1 , , , ,(Ȝ+2ȝ) Ȝ ȝ( )xx xy yy xyF u v u v    , 

1 , , , , ,ȝ( ) Ȝu ȝ( )xx xx xy xy xyF u v u v     , 

1 1 , ,x xxR c u u , 
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2 , , , , , ,ȝ( ) (Ȝ 6 )xx y x xy x xyR u u u u C u u    . 

Here, Ȝ  and ȝ  are Lamé’s elastic constants related to Young’s modulus by relation 

(1 )(1 2 )

Ȟ
E

 

  

, Ȟ  the Poisson’s ratio, 1 3(Ȝ+2ȝ) 6c C   and C  is the Landau elastic 

modulus of the 3-rd order [8] .  

To relate (1) and (2) to classical 1D longitudinal wave equation [8], we write   

2 2
2

2 2
( , , , )

u u
c M u v x t

t x

 
 

 
,          (3) 

where / ȡc E , or Ȝc f  if related to frequency and wavelength, and M a function which can 

be easily identified. We must say that the density is a function of temperature ( )T . By introducing a 

reference density 0 , we define a dimensionless density as 
0


 


.  

If the specimen has the length equals to Ȝ / 2l  , we obtain for longitudinal vibrations 

 
2 2 4 34ȡ 4ȡ / 3 ( , ,ȡ)E l f l f C h l f c  , (4) 

where ( , ,ȡ)h l f  is a control function that depend on temperature.  

In the case of flexural behaviour, the Bernoulli-Euler equation [9, 10] gives 

  

 
2 4 2 2 8 4

4 2 4 2 2

64π ȡ 8π ȡ
( , ,ȡ)

n n

n n

l f l f
E

m d m d h l f
  ,  

(5) 

where nf  is the resonant frequency of the n th mode of vibration, d  diameter of the specimen and 

nm  is the n th root of equation cos cosh 1m m  .  

Lord Rayleigh [11] and Timoshenko [12-14] introduce in the motion equations the effects of 

rotatory inertia and of shear deformation. In this case, the Young’s modulus E  is evaluated as 

4 10
2 5

2 2 3

ȡ ȡ
14

3 ( , ,ȡ)n n n n n n

l l
E K f T K f T

d d h l f
  , (6) 

with nK  is a constant which depend on the number of vibration mode, and nT  a constant which 

depend on the vibration mode, /d l , and the shear modulusG [2].  

2. INVERSE PROBLEM 

We assume that the function ( , ,ȡ)h l f  can be expressed as power series in terms of a small 

parameter 
0

į T

mT
 , where 0T  is a reference temperature and m  a given parameter 

( )

0

( , ,ȡ) ( , ,ȡ)į
N

k k

k

h l f h l f


 .                         (7) 

 
(1)

1 1( , ,ȡ) (1 expθ )h l f a  ,  (2)

2 1 2 1 2( , ,ȡ) 1 expθ expθ exp(θ θ )h l f a     , 

………. 
(8) 
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( )

1 1 1

( , ,ȡ) 1 expθ exp(θ θ ) exp(θ θ θ ) ....
N N N

N

N j j l j l r

j j l j l r

h l f a
     

 
        

 
   , 

θ ω τ Ȣk k k k kb x c y     ,  1,2,...k N ,   

where ,k kb c are dimensionless wave numbers, ωk the dimensionless frequencies and k  the 

dimensionless phases. The series (7) and (8) inserted into (1) - (6) gives a set of equations obtained by 

equating the powers of į  . The parameters , ,k k ka b c , ωk and Ȣk , 1,2,...k N , are computable from 

this set of equations and an inverse problem coupled with a genetic algorithm.  

To extract the Young’s modulus for a given material from (1)-(8), the least-squares optimisation 

technique is used. An objective function  is chosen to measure the agreement between theoretical 

and experimental data 

             
2 2

1

( ) {[ ( )] γ }
M

e

i i

i

C v v C


    ,                         (9) 

where 
e

iv  are the measured i’th Young’s modulus, iv the corresponding model prediction, M  the 

number of measurements M p , with p  is the number of unknown parameters. 

In (9) the quantity   estimates the verification of the set of equations obtained by equating the 

powers of į . The parameter vector C contains 5N unknowns, i.e. , ,k k ka b c , ωk and Ȣk , 

1,2,...k N . We define fitness as follows 

0F





,  
2

0

1

( )
M

e

i

i

v


  .                         (10) 

As the convergence criterion of iterative computations, the expression Z to be maximum is 

defined 

10

0

1
log

2
Z





   max .                         (11) 

A binary vector with 5N genes is used to represent the real values of unknowns. The length of 

the vector depends on the required precision, which in this case is six places after the decimal point. 

The domain of parameters C  [ , ]i ia a , 1,2,...,5i N  is divided into a least 15000 equal size 

ranges. If 100ia   the length of this domain is 200. That means that each unknown is represented by 

a gene (string) of 22 bits  (
21 222 3000000 2  ). One individual is consisted with the row of 5N   

genes, that is, a binary vector with components 

 (
(1) (1) (1) (2) (2) (2) (5 ) (5 ) (5 )

21 20 0 21 20 0 21 20 0... ... ... ...N N Nb b b b b b b b b ) 

The mapping from this binary string into 5N real numbers from the range [ 100,100]  is 

completed in two steps [15-18]: 

1. convert each string ( 
( ) ( ) ( )

21 20 0...i i ib b b ) from the base 2 to base 10 

                            
( ) ( ) ( )

2 1 2 0 0 2( . . . )i i i

ib b b C  , 1,2,...,5i N  

 

2. find a corresponding real number iC , 1,2,...,5i N . 
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3. RESULTS 

Excitation of transverse component v of the longitudinal wave propagating in the steel alloys is 

given by (2). The wave field does not propagate only in the direction x  but also in the direction y . 

As the result, the waves with doubled frequency are put into evidence. The relationship between the 

amplitudes 0u  and 0v  of this wave is given by 

 
2 3

0 0 1/ i ( , ,ȡ) / 3 ȡv u c h l f lf a  ,                             (12)  

where 
Ȝ ȝ

ȡ
a

 
 .   

Consider the 4330V steel alloy. The specimen dimensions are  76.36l  mm, 3d  mm and 

ȡ 7840 3kg/m , at 296T  K [2].  

 

 
 

Fig. 1. Variation of maximum fitness for İ 0.01 .  

 

Determination of the Young’s modulus and its variation with the temperature is performed 

based on the above-mentioned results.  

Comparing only the performance, the genetic algorithm is superior to other conjugate gradient 

methods because it is simple to be applied, is stable and the correct solutions are detected through a 

relatively small number of iterations, without requiring the stopping criterion for them. In order to 

analyse the effect of noise in the experimental data used in the inverse problem, the measured i’th 
Young’s modulus e

iv  are multiplied by )1( ir , where ir  are random numbers uniformly 

distributed in a given interval ],[  , with 1.0,01.0,0 . The final values of maximum fitness 

after 344 iterations are 
43.45 10 for 0 , 

37.02 10 for 01.0  and respectively 
20.88 10  for 

1.0 . Thus, highly accurate measurements for Young’s modulus are required to obtain good 

predictions. Even small perturbations in the Young’s modulus values can lead to erroneous estimates.  

 

Variation of the maximum of fitness for alternation of generations is given in Fig. 1, for  

İ 0.01 . The function 0/h h  is represented in Fig. 2, for ȡ 1 , and 0h  a reference function for 

İ 0.01 .  The variation of 0/h h  with respect to ȡ  is displayed in Fig. 3 for some frequencies and 

their subharmnics, for İ 0.01 . 
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Fig. 2. Function 0/h h  for ȡ 1 . 

 

 

Fig. 3. Variation of 0/h h  with respect to ȡ  for two frequencies and their subharmonics. 
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Fig. 4. Variation with temperature of the dynamic Young’s modulus in 4330V steel, for longitudinal vibrations 

and flexural vibrations. 

 
Fig. 5. Variation with temperature of the dynamic Young’s modulus in 4330V steel, for flexural vibration in 

Timoshenko beam model. 
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Variation with temperature of the dynamic Young’s modulus in 4330V steel is displayed in Fig. 

4 for longitudinal vibrations and flexural vibrations in Bernoulli-Euler model.  

Results are obtained by using equations (4) and (5), respectively, and compared with the 

experimental results given by Cook et al. [2] and Teft [14].  

We see that both equations give results closest to the experimental results.  

In the case of Timoshenko beam model, variation with temperature of the dynamic Young’s 
modulus in 4330V steel is displayed in Fig. 5. The results are obtained by using equation (6) and 

compared with the experimental results given by Cook et al. [2] and Teft [14]. As above, we see that 

both equations give results closest to the experimental results.  

 

 
Fig. 6. The amplitudes of the displacement for 6.2kHzf   and 12.4kHzf  . 

 

 

Fig. 7. The amplitudes of the displacement for 9.4kHzf   and 18.8kHzf  . 
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The LM model describes the generation of subharmonics. As can be seen in Fig. 6 (and Fig.7, 

respectively), the displacements of the normal mode 12.4kHzf  (18.8kHz) and respectively, of the 

subharmonic mode 6.2kHzf  ( 9.4kHzf  ), for Timoshenko beam model, represent two kind of 

vibration regimes: a localised-mode (fracton) regime for 12.4kHzf  (18.8kHz) and an 

extended-vibration (phonon) regime for 6.2kHzf  ( 9.4kHzf  ). The fracton vibrations are mostly 

localised on small distances, while the phonon vibrations essentially extend to the whole beam. 

 In the case of a periodical plate the dispersion prevents good frequency matching between the 

fundamental and appropriate subharmonic modes [19]. Table 1 shows the computed frequencies for 

Timoshenko beam model. We see that for given frequency nf , the generating of / 2f  subharmonic 

is determined by the existence of a small frequency mismatch / 2nf f and large spatial overlap 

between the fundamental and subharmonic displacement field. By choosing the LM model, the 

excitation of transverse component of the longitudinal wave propagating in structural steel alloys is 

put into evidence. Fig. 8 shows the propagation in time of both components of displacement in 

Timoshenko beam model. 

 
Table 1. Computed frequencies for Timoshenko beam model 

f
 

[kHz]
 

5.4 

 0.05 

6.2 

 0.01 

7.9 

 0.03 

8.4 

 0.1 

9.4 

 0.01 

10.8 

 0.01 

11.3 

 0.1 

12.4 

 0.02 

13.6 

 0.03 

 14.9 

 0.01 

15.8 

 0.03 

16,2 

 0.06 

16.8 

 0.06 

17.2 

 0.1 

17.5 

 0.07 

18.8 

 0.02 

19.9 

 0.05 

21.6 

 0.4 

 

 
Fig. 8. Excitation of transverse component of the longitudinal wave propagating in  Timoshenko beam 

model. 
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4. CONCLUSIONS 

The dynamic Young’s modulus for steel alloys and its variation with temperature is presented in 

this paper, based on the Landau-Murnaghan constitutive law coupled with the resonance methods and 

a genetic algorithm. The LM model is able to describe interesting phenomena unknown in linear 

media, such as the waves with doubled frequency with respect to the basic mode, or excitation of 

transverse component of the longitudinal waves in structural steel alloys. Variation with temperature 

of the dynamic Young’s modulus in 4330V steel is analyzed for longitudinal vibrations, flexural 

vibrations in Bernoulli-Euler model, and flexural vibration in Timoshenko beam model, respectively. 

The application of our formulas in estimating the Young’s modulus were tested by solving an 

inverse problem, for which an objective function was chosen to measure the agreement between 

theoretical and experimental data. The points to be elaborated are based on followings: 

(a) use of the Lagrangian description for an unloaded non-deformed isotropic object; 

(b) propagation of an elastic wave in a finitely deformed object loaded and stressed in the 

uniaxial direction. 

(c) estimating the Young’s modulus for the longitudinal vibrations, flexural vibrations in 

Bernoulli-Euler model, and flexural vibration in Timoshenko beam model, respectively, from the 

viewpoint of Murnaghans’s finite deformation theory. 

The LM model describes some features unknown in linear media such as the excitation of 

transverse component of the longitudinal wave propagating in structural steel alloys and subharmonic 

generation of waves.  

The results show that the Young’s modulus varies in a complex way with temperature, in 
agreement with experimental results.     
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