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Abstract This paper is a review of ultrasonic technique which is an efficient tool for 
nondestructive inspection of pipelines. Quantitative detection and evaluation of flaws of 
different size and geometry, present in pipelines such as corrosion and cracks need 
extensive examination of ultrasonic wave propagation phenomena. Horizontally polarized 
shear waves are known as Lamb waves. These waves are useful in the inspection of the 
ultrasonic type, since they can be detected on the outer and inner surface of the pipelines. 
The simulation is relatively easy in straight pipelines but much harder for other geometries 
which are including curvatures, joints, etc. The goal of the present contribution is to apply 
two simulation techniques to analyze the wave propagation in pipelines. We discuss the 
curvilinear elastodynamic finite integration technique (CEFIT) and the local interaction 
simulation approach (LISA), developed by Schubert and Delsanto, respectively. The two 
techniques are reviewed in the next sections with examples of their applications. 
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1. INTRODUCTIONS 

The review of this topic uses in principle two relevant papers:  
Delsanto, P.P.,  Schubert, F., Prevorovsky, Z., I. Genesio, I., Chiroiu, C., CEFIT and LISA 

simulations of the propagation of elastic waves along pipelines, Politecnico di Torino. Internal 
report, and  

Agostini, V., , Baboux, Jean-C., Delsanto, P.P., Monnier, T., Olivero, D., Application of Lamb 
Waves for the Characterization of Composite Plates, AIP Conference Proceedings 497, 455 
(1999); https://doi.org/10.1063/1.1302041. 

  
The oil and petro-chemical industries work with hundreds of kilometres of pipelines. Part 

failures on gas and oil pipelines have emphasized the need for a reliable non-destructive inspection 
technique for detecting and locating the flaws in pipelines is needed because high portions of them 
are insulated and exposed to external corrosion which cannot be easily detected. Modern ultrasonic 
techniques like the acoustic emission and acousto-elastic methods, are capable to reveal defects in 
pipelines prior to failure. The cylindrical Lamb waves [1, 2] is a very good solution to the problem 
of flaws detection and evaluation in pipelines.  

A high-energy source may be the pulse laser operating at different energy modes may be 
considered. The laser-ultrasonic technique is of great potential for a wide range of ultrasonic 
measurements [3]. The advantage of this technique consists in remote non-contact and well 
reproducible broadband excitation of structures. By different thermo-elastic or optical absorption by 
tube surface, different modes of Lamb waves can be obtained. The optical lenses and beam splitters 
are also good to create various source radiation designs. Suitable coatings may enhance the 
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absorption of optical energy on the tube surface.  
Propagating ultrasonic waves are detected either by direct surface-contact sensors 

(piezoelectric ultrasonic or acoustic emission probes are mostly used) or by generally less sensitive 
non-contact sensing devices (e.g. EMAT or laser interferometer). The laser interferometer detection 
is neither influenced by resonant and directional behavior of sensors, nor by acoustic coupling 
problems present with piezoelectric transducers (air-coupled piezoelectric transducers are also 
available at present time). The detected signals are recorded by digital transient recorders with high 
sampling rates.  

To compare numerical wave propagation simulations with experimental observations, laser-
ultrasonic excitations of steel tube samples have been realized. Laser interferometer and 
piezoelectric sensors were used to detect surface displacements and velocities induced at various 
distances from the ultrasonic wave source. 

The elastodynamic finite integration technique for waves in cylindrical geometries (CEFIT) 
was analised in [4]. Lamb waves can propagate for a long distance under insulation and may be 
excited and received using transducers placed at accessible locations, where only small portion of 
the insulation must be removed [5-8]. Numerical modelling of elastic wave propagation in random 
particulate composites is analysed in [9]. In [10] the modelling of linear and nonlinear elastic wave 
propagation using finite integration techniques in Cartesian and curvilinear coordinates is derived, 
while the method CEFIT - A Numerical Modelling Tool for Axisymmetric Wave Propagation in 
Cylindrical Media are discussed in [11, 12].    

All non-destructive inspection techniques require simple experimental set-ups consisting of an 
ultrasonic transmitter, receiver, and a device for recording. Nevertheless, the interpretation of the 
received signal requires a very careful and sophisticated signal processing procedure along with a 
deep understanding of complex elastic wave propagation mechanisms. A comparison of reliable 
numerical simulations with appropriate experimental results yields the best way to improve pipeline 
inspection techniques. The generation and receiving of ultrasonic waves are made by a pair of direct 
contact longitudinal, shear or Rayleigh wave probes. Simulation of ultrasonic pulse propagation in 
complex media is presented in [13]. 

Ultrasonic technique is an efficient tool for nondestructive inspection of pipelines. 
Quantitative detection and evaluation of flaws of different size and geometry, present in pipelines 
such as corrosion and cracks need extensive examination of ultrasonic wave propagation 
phenomena. Horizontally polarized shear waves are known as Lamb waves. These waves are useful 
in the inspection of the ultrasonic type, since they can be detected on the outer and inner surface of 
the pipelines. The simulation is relatively easy in straight pipelines but much harder for other 
geometries which are including curvatures, joints, etc. [14-19]. The goal of the present contribution 
is to apply two simulation techniques to analyze the wave propagation in pipelines. We discuss the 
curvilinear elastodynamic finite integration technique (CEFIT) and the local interaction simulation 
approach (LISA), developed by Schubert and Delsanto, respectively. The two techniques are 
reviewed in the next sections with examples of their applications. 

The goal of the present contribution is to illustrate the applicability of two different simulation 
techniques to investigate wave propagation mechanisms in pipelines, i.e. the curvilinear 
elastodynamic finite integration technique (CEFIT) and the local interaction simulation approach 
(LISA), developed by Delsanto et al. [5-7] and Schubert et al. [4, 11-14], respectively. The two 
techniques are briefly reviewed in the next two sections. 

2. CURVILINEAR ELASTODYNAMIC FINITE INTEGRATION TECHNIQUE (CEFIT) 

This section is written in the spirit of the Delsanto et al. work [5-7] The Elastodynamic Finite 
Integration Technique (EFIT) is scheme to model the elastic wave motion in the numerical time 
domain for different structures. The method EFIT relies on the approximated evaluation of the  
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Cauchy’s equation of motion in integral form for a linear elastic, isotropic, and non-dissipative 
medium 

0 ( , ) d  ( , ) d ( , ) d
V S V

v r t V nT r t S f r t Vρ = +∫∫∫ ∫∫ ∫∫∫ ,                (1) 

and the deformation rate equation obtained by derivation of Hooke’s law with respect to time  

 T( , ) d   I n ( , )  {  v( , ) ( , ) } d
V S

r t V v r t n r t v r t n S= λ ⋅ + µ +∫∫∫ ∫∫ ,          (2) 

where v(r,t) is the particle velocity vector, T(r,t) the stress tensor and λ(r) and µ(r) are the Lamé’s 
material constants. I denotes the unity tensor, n the outward normal unit vector on S, and f(r,t) is the 
densityf the volume force. Both equations (1) and (2) are written in integral form. The EFIT 
procedure consists in a discretized version of the motion equations (1) and (2) which are  
numerically solved by an explicit time domain scheme on a staggered grid. In comparison with 
traditionnal finite difference formulations, EFIT proves a superior treatment of the boundary 
conditions and stability concerning the numerical treatment.  

EFIT was exclusively used only for a Cartesian cubic grid formulation. For modeling the wave 
motion in pipelines, the Cartesian EFIT is inadequate due to poor discretization of curved surfaces. 
To avoid this, the discretization used for the cylindrical EFIT scheme is shown in Fig.1, together 
with the location of the elastic field components on the staggered grid.  So, the  

 

 
Fig. 1: CEFIT discretization in cylindrical coordinates  used for elastic wave modeling in pipeline structures. The 

arrows, dots and crosses in the figure denote the location of the elastic field components, i.e. particle velocity and stress 
tensor components [17, 18]. 

 
EFIT method is abbreviated as CEFIT is cylindrical or curvilinear EFIT, where C means either 

cylindrical or curvilinear EFIT. The pipeline model is shown in Fig. 2.  
It consists of a cylindrical shell with various kinds of cracks. The cracks may be 

circumferential or non-circumferential. For circumferential crack with axisymmetric ring source, a 
2D methods is used. 

For non-circumferential cracks and/or non-axisymmetric sources like point impacts, the 3D 
CEFIT method is necessary. 
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Fig. 2: Straight pipeline geometry including circumferential and non-circumferential cracks in a cylindrical shell 

environment [17, 18]. 
 

For pipelines, the cylindrical and toroidal coordinates can be combined in order to discretize 
both, the straight as well as the curved parts of the pipeline accurately. Fig.3 shows the cross-
sections of 3D-CEFIT models of a pipeline curvature (left hand side) and a joint (right hand side). 
 
 

Cylindrical 
coordinates

Cylindrical 
coordinates

Toroidal 
coordinates

         

Cylindrical 
coordinates

Cylindrical 
coordinates

  Toroidal 
coordinates  

 
Fig. 3: Cross-sections of 3D-CEFIT models of a pipeline curvature (left hand side) and a joint (right hand side) 

 [17, 18]. 
  

For an unfaulted plate, Fig.4 shows a snapshot at time = 2μst  of the perpendicular injection at 
frequency ν = 100 kHz. To put into evidence the effects of wave propagation, the gray map of each 
snapshot are re-scaled between the maximum (darkest tone) and the minimum (lightest tone) of the 
displacements. Fig. 5 shows a snapshot of the longitudinal displacements at time = 267μst : the 
anti-symmetric profile of the displacements reveals the presence of the 0A  Lamb mode. The 0S  
mode is also present but, to a much lesser extent. 
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Fig. 4: Snapshot of  the injected perpendicular displacements pulse at  t = 2 µs [17, 18].  

 
 

Fig. 5:  Snapshot of the displacements amplitude (longitudinal component) at  t = 267 µs: the A0 mode is selected 
[17, 18]. 

 
For a CEFIT simulation, we firstly consider the Delsanto example [5-7] of interaction of a 

quasi-longitudinal wave (center frequency 300 kHz) with a 1.5 mm deep circumferential crack in 
the outer pipeline wall at z = 25 cm. The interaction of a quasi-longitudinal wave with a 
circumferential crack in the outer pipeline wall is shown in Fig. 6. 

Fig. 5 shows the wave propagation in the cross-section of the wall after the incident wave 
arrives at the crack. A quasi-longitudinal and a flexural wave, both running in forward as well as in 
backward direction are observed. The time signals on the right show the velocity components zv  
calculated at the top, and rv  calculated to the bottom. Both pulses are detected at the outer pipeline 
wall at z = 15 cm. The incident wave arrives at the time t ≈ 27 µs while the reflected waves can be 
observed at t ≈ 65 µs and t ≈ 80 µs, respectively. Fig. 6 shows the velocity components zv  at the 
top, and rv  at the bottom.    
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Fig. 6: CEFIT simulation of interaction of a quasi-longitudinal wave (center frequency 300 kHz) with a 1.5 mm 

deep circumferential crack in the outer pipeline wall at  z = 25 cm [17, 18]. 
 

 
 

Fig. 7: Velocity components zv  at the top, and rv  at the bottom[17, 18]. 
 

Interaction of a quasi-longitudinal wave with a horizontal and a vertical oriented non-
circumferential crack in the inner pipeline wall is shown in Fig. 7.  
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Fig. 8: 3D-CEFIT simulation of interaction of a quasi-longitudinal wave (center frequency 200 kHz) with a 
horizontal (top) and vertical (bottom) oriented 3 cm long non-circumferential crack in the inner pipeline wall [17, 18]. 

 
 
 

 
 

Fig. 9: 3D-CEFIT simulation of wave propagation due to elementary point impact on the pipeline wall. The figure 
shows the elastic wave field caused by horizontal force impact producing a quasi-longitudinal wave as well as a pure 

shear wave [17, 18]. 
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Fig. 10: 3D-CEFIT simulation of wave propagation due to elementary point impact on the pipeline wall (ϕz-plots of the 
outer cylindrical shell surface). The figure shows the wave field produced by radial force impact as can be realized by a 

pencil break for example. In this case a flexural wave is generated [17, 18]. 
 

3. LOCAL INTERACTION SIMULATION APPROACH (LISA) 
 

The simulation of the ultrasonic wave propagation in both homogeneous and heterogeneous 
media is possible if we derive heuristically the iteration equations by means of a simple Spring 
Model [14]. In the model, the specimen is first discretized with gridpoints representing tiny 
homogeneous cells of materials. Across the gridpoints a network of springs is assumed, to ensure an 
elastic behaviour inside each material component and, in the case of perfect contact interfaces, a 
perfect contact among different components. Fig. 11 gives a pictorial representation of the Spring 
Model, in the case of a homogeneous material, by depicting the interaction of a generic grid point O 
with its nearest neighbors, labelled with integers from 1 to 8. 
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Fig. 11: Spring Model for a generic gridpoint O in the case of a homogeneous material [17, 18]. 

 
If the gridpoint O location is on the interface between different materials at the right and left of 

the vertical through O, then the two vertical springs (F6 and F8) are each split into two separate 
springs, according to the physical properties of the corresponding material. If O is a crosspoint at 
the intersection of two orthogonal interfaces separating four different materials, then all four 
horizontal and vertical springs are split each into two springs. In this way, we obtain the iteration 
equations for the displacements of a pulse propagating into a heterogeneous discretized medium.  
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We remind that the medium can be arbitrarily complex, since each grid point may be a cross point.  
The further step models the interface contact by means of additional springs. The node point O 

is then split into four subnodes O1, O2, O3 and O4, connected through internal springs (Fig.12). 
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Fig. 12: Spring Model for a heterogeneous material [17, 18]. 

 
Each node may be characterized by a contact quality tensor ijQ in order to introduce the 

possibility of weakened or broken springs. If 0ijQ = , the bond at the corresponding node is 

considered perfect. A smaller or zero value for any component of ijQ  indicates possible interface 
flaws (Fig. 13). 

In fig.13, the Intact springs are marked with a solid line ( 1ijQ = ), broken springs with a dotted 

line ( 0ijQ = ) and weaken springs with a solid dashed line ( 0.5ijQ = ). 
 

 

 

 

 

 

 
 
Fig. 13: Sets of internal springs; a) Intact springs are marked with a solid line (Qij= 1); b) broken springs with a 

dotted line (Qij= 0) and c) weaken springs with a solid dashed line (Qij = 0.5)  
[17, 18]. 
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4. RESULTS AND CONCLUSIONS 
 

We analyze in this section the effects of various kinds of flaws in the pipeline (see Fig. 14), 
These flaws are defined as gridpoints in which some of the components of the contact quality tensor 

ijQ  are different from 1 [16]. In order to separate them from other reflection or mode-conversion 
effects, we have considered the propagation of a longitudinal ultrasonic wave in a homogeneous 
plate, discretized by means of a 350 times 300 grid. An imperfection has been introduced at i =150 
and j = 148,149,150,151,152 and the wave has been injected from the left side of the specimen. 

 

 

Fig. 14 : Transversal (a) and longitudinal (b) sections of the pipeline [17, 18]. 
 

In the particular case only three kinds of flaws are significantly different due to the symmetry 
of the problem. A completely arbitrary flaw may be seen as a combination of these three basic 
types. 

For a 350 x 300 grid, we introduce an imperfection at i =150 and j = 148,149,150,151,152. 
The wave has been injected from the left side of the plate. In the particular case under 
consideration, due to the symmetry of the problem, only three kinds of flaws are significantly 
different:  

1.  vertical defect, defined by 12 13 24 34 0Q Q Q Q= = = = ; 
2.  vertical slippage, defined e.g. by 12 0Q = ; 
3.  rhomboidal slippage, defined e.g. by 13 0Q = .  

For a completely arbitrary flaw may be seen as a combination of these three types. 
All the other components of ijQ  are, in the three cases, equal to 1. Since the defect is small, 

the incident longitudinal wave propagates almost undisturbed. A reflected wave is also quite 
noticeable, since it reaches an amplitude of almost 20% that of the incident wave. In fact, a defect 
behaves as a source of almost symmetrical spherical waves, which create a quite conspicuous 
interference pattern. In addition, there is generation, by mode conversion, of shear waves of 
opposite sign between top and bottom, accompanied by reconversion to longitudinal modes, since 
the tips of the defects behave as point sources of shear waves. The behaviour of the reflected wave 
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is in good qualitative agreement with experimental data. 
We see that the incident plane wave propagates almost undisturbed, with a noticeable, but 

much smaller reflected wave (about 4% of the incident wave) and a generation by mode conversion 
of shear waves. The strong anisotropy of the problem is clearly visible, particularly in the bottom 
plots, where a vertical shift of the two spherical waves generated by the tips of the flaw is evident, 
with opposite signs of the amplitude of the mode converted shear waves. 

In the case of a rhomboidal slippage, the results are similar to those obtained before, but with 
an even stronger anisotropy effect. The wave front is no longer quasi-spherical and the propagation 
direction of the generated waves, once they are far enough from the defect, is clearly in a diagonal 
upwards direction. Again, the reflected wave has an amplitude of a few per cent of the incident 
wave. 

To conclude, we wish also to present an illustration of Lamb waves propagation in a 
transversal cut of the pipeline. Fig. 15 represents the case of an unblemished section. Cases with 
different kinds of defects can be easily modeled and analyzed, following the procedure described 
for the case of longitudinal cuts. 

 

 
 

Fig. 15: Snapshots at various times of the amplitude of a low frequency Lamb mode in a circular section of a pipeline 
[17, 18]. 
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