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Abstract This paper is applying the cnoidal method to study the dynamics of the left 
ventricle. The left ventricle is a mixture of muscle and collagen fibers, coronary vessels, 
coronary blood and the interstitial fluid, so that its behavior results from a contractile 
motion of the muscle cells. The cnoidal method makes possible to use the theta function to 
describe the left ventricle motion as a superposition of  cnoidal pulses. 
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1. INTRODUCTION 

The heart consists of the right and the left pumps which are connected in series to pump blood 
through the circulatory system. The left ventricle generates a high pressure (about 16 kPa) which is 
four times the pressure developed by the right ventricle [1]. The left ventricle has a thick-wall of 
myocardium between the epicardium and the endocardium.  

The left ventricle exhibits a contractile motion of the muscle in the left ventricular wall due to 
the fibers located around the ventricle and their orientation relative to the circumferential direction. 
The orientation changes from about 60 at the endocardium to –60 at the epicardium. 

The heart muscle is an anisotropic mixture of muscle and collagen fibers, coronary vessels, 
coronary blood and the interstitial fluid. This anisotropy influences the distribution of stresses in the 
wall [1-4]. The tissue is modeled as two-phase mixture, i.e. the solid and the fluid phases 
representing the different coronary microcirculatory components [5]. The parameters which define 
the constitutive equations are defined taking account of the nonlinear interaction between the 
responses to different loading schemes, the influence of the myofiber sheet architecture, the effects 
of transverse stresses in the myocytes and the relationship between the collagen fiber and the 
mechanical properties of tissues after myocardial infarction. The constitutive equations of the 
myocardial tissue are elaborated in [6].  In this paper, the cardiac tissue is modeled as a mixture of 
an incompressible solid and an incompressible fluid. The constitutive laws are specified within the 
framework of the intrinsic assumptions of the theory. The solutions are describable as a linear and 
nonlinear superposition of cnoidal pulses. The experimental results of Fung are used to determine 
the unknown parameters of the model by a genetic algorithm [7, 8, 11-13].  

The dilaton concept is used to understand the mechanism of the strength of solids [14]. 
Theoretical investigations of residual strain in left ventricle are discussed in [15]. 

 
3. THEORY 

In this section, the heart is modeled as a super ellipsoid surface defined by equations [16] 
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where 321 ,,i,ai =  and 21,i,ci =  are known constants, helixφ  is the  angle between the muscle fibre 
direction and the local circumferential direction, varying from 60 0  at the endocardium through 0 0  
in the midwall layers  to –60 0  at the epicardium, while transφ  is kept zero, and transφ   is the angle 
between the local circumferential direction and the projection of the fibre on the plane 
perpendicular to the local longitudinal direction, varying from 13.5 0  at the base through 0 0  at the 
equator to –13.5 0  at the apex (Fig. 1). The cylindrical coordinates are also represented in Fig. 1. 
The z -axis corresponds to the z -axis of inertia of the super ellipsoid model. 
The muscle fibres in the ventricular wall are assumed to be parallel to the endocardial and 
epicardial surfaces. The cardiac muscle is considered to be a mixture of two phases, a solid phase 
and a fluid phase. The equations are derived from the general equations of the continuum theory of 
mixtures. 
 

 
Fig.1. Cylindrical coordinates and definition of the angle helixφ  , transφ  . 

Let us to introduce the notations : 
 
V      actual volume of the heart, 

),,( zrx θ=  spatial cylindrical (Eulerian) coordinates, centred in O  ,
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t           time coordinate, 
sσ  effective Cauchy stress in the solid representing the stress induced by the   

            deformation   in the absence of fluid and measured per unit bulk surface, 
p  intra-myocardial pressure representing the stress in the liquid component of   

           the bi-phasic mixture, 
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pIs −σ=σ   total Cauchy stress tensor in the mixture, Tσ=σ , 

u         displacement vector, 
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q         Eulerian spatial fluid flow vector, 
0K       permeability tensor of the underformed tissue, 
bN      averaged porosity of the underformed tissue, 

cc        volumetric modulus of the empty solid matrix, 
uH ∇=    displacement gradient, 

F       deformation gradient tensor, H1F += , 
0Fdet >=J       Jacobean of the deformation, 

C  isotropic energy function, 2)1(
2

−= JcC
c

, zero in the underformed state and   

  positive elsewhere, 
W       strain energy function, zero in the underformed state and positive elsewhere, 

K        permeability tensor,  02)11( K
N

JK b +
−

= ,    

E        Green-Lagrange strain tensor, )(
2
1 IFFE T −= , 

),( tES     effective second Piola-Kirchhoff stress tensor, Ts FJFS )( 11 −− σ= ,  
               TSS = , split into two components  pa SSS += , 

),( tES a     active stress tensor,  
),( tES p     passive stress tensor, split into two components  scp SSS += , 

)(ES c         component of the passive stress tensor resulting from elastic volume 
                   change of the myocardial tissue, zero in the underformed state,  

),( tES s     component of the passive stress tensor resulting from viscoelastic shape  
                   change of the myocardial tissue, 

)(ES e         anisotropic (orthotropic) elastic response of the tissue. eS  is zero 
                   in the underformed state, 

)(tG         a scalar relaxation function, 
aT    first Piola-Kirchhoff active stress (not symmetric) related to the second  

              Piola-Kirchhoff active stress by  aa TFS 1−= , 
l          current sarcomere length, 

v          velocity of shortening of the sarcomeres 
dt
dlv = , 

)1(
z

,
r

,
r ∂

∂
∂
∂

∂
∂
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θ

 gradient operator with respect to the current configuration. 

 
With this, the equilibrium equation of the deformed myocardicum is written for neglecting the 

inertia forces  
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    0=∇−σ∇ ps  .                                                       (2) 

The Darcy’s law in Eulerian form (by neglecting the transmural pressure differences across 
blood vessel walls) is 

 
                                                  pKq ∇−= ,                                                         (3) 

with 02)11( K
N

JK b +
−

= , the parameters 0K and bN being specified. 

The continuity equation (conservation of mass) is written as 
                                        0=∇+∇ qu ,                                                    (4) 

where dot means the material time derivative. 
We add the pasive constitutive laws,as 

   
E
CS c

∂
∂

= ,                                                       (5) 

where 

                                        pa SSS +=     , scp SSS +=  ,                                         (6) 

                                        2)1(
2

−= JcC
c

 , 0Fdet >=J ,                                         (7)       

                                          ),( tES Ts FJF )( 11 −− σ= , TSS = ,                                      (8) 

                                   )(
2
1 IFFE T −= , H1F += , uH ∇=  .                                 (9)     

In (1-9), C  is the isotropic energy function, E  is the Green-Lagrange strain tensor, and 
),( tES  the effective second Piola-Kirchhoff stress tensor, split it into an active stress ),( tES a  and 

a passive stress ),( tES p . The passive stress tensor is split into a component resulting from elastic 
volume change of the myocardial tissue )(ES c , and a component resulting from viscoelastic shape 

),( tES s  described in the form of quasi-linear viscoelasticity [7, 8] as 

                                          d( ) d
d

t
s eS G t S

−∞

= − τ τ
τ∫  ,                                                (10) 

                                                        
E
WS e

∂
∂

= ,                                                            (11) 

where eS is the anisotropic elastic response of the material, )(tG is a scalar function (reduced 
relaxation function) derived from a continuous relaxation spectrum [2, 3], W  is the potential energy 
of deformation per unit volume (or elastic potential).  The full orthotropic behaviour is described in 
[3] while the transversely isotropic behaviour with respect to the fibre orientation is described in[6]. 
The expression of  W  is exponential depending of ijE  [7, 8].  

In this paper, the pseudopotential energy approach is adopted. The energy W  is given by 
taking into account of the ion-core (Born-Mayer) repulsive energy [9, 10] 
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  0.5 exp[ ( ) ]d
V

W R V
V

= ( ) −∫α ϕ β ϕ ,                                           (12) 

where ( ( ))xα ϕ  is the repulsive energy function, ( ( ))xβ ϕ  the repulsive range function and V  is the 

heart volume, and 2 2 2
0 0 0( ) ( ) ( )R x x y y z z= − + − + −  with 0 0 0( , , )x y z  an arbitrary point. We 

suppose that ( )α ϕ and ( )β ϕ depend on the angles angle helixϕ  transϕ  in the form 
 

                           1 2( ) ( ) ( )helix trans=α ϕ α ϕ α ϕ , 1 2( ) ( ) ( )helix trans=β ϕ β ϕ β ϕ  .               (13) 

The active constitutive laws is written as [12] 

                                                      ),,(0 vltATT aa = ,                                               (14) 

where aT is the first order Piola-Kirchhoff non-symmetric active stress tensor, related to the second 
Piola-Kirchhoff active stress by  aa TFS 1−= , and 0aT  is a constant associated with the load of 
maximum isometric stress.  

The stress tensor aT  is convenient for some purposes; it is measured relative to the initial 
underformed configuration and can be determined experimentally. The cardiac muscle is striated 
across the fibre direction. The sarcomere length l  (the distance between the striations) is used as a 
measure of fibre length.  The experiments show that the active stress generated by cardiac muscle 

depends on time t , sarcomere length l and velocity of shortening of the sarcomeres 
dt
dlv =  [4]. The 

active stress generated by the sarcomeres is directed parallel to the fibre orientation. The function 

),,( vltA  represent the dependency on lt, and 
dt
dlv = . We suppose that ),,( vltA has the form 

                                             )()()(),,( vhlgtfvltA = .                                          (15) 

The functions ),,( vltA , )(φα and )(φβ  are evaluated from experimental data [5,6] by using a 
genetic algorithm. The equations (1)-(14) represent a coupled set of four equations in ),( txuk , 

3,2,1=k  and ),( txp that can be written as  

0)( =∇−∇+∇ pKu , 

                                    0)]S[( s1 =∇−++∇ − pFSSFJ Tca  ,                                      (16) 
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W ])(exp[)(5.0 φβφα  .                                                                      

The initial conditions are given by 

                                     )()0,( 0 xpxp = , 1Σ∈x , 3,2,1=k , ],0[ Tt ∈ , 
                                     0)0,( kk uxu =  , 1Σ∈x , 3,2,1=k , ],0[ Tt ∈ ,                        (18) 
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                                      0)0,( =xuk  , 13 Σ⊂Σ∈x , 3,2=k , ],0[ Tt ∈ ,   
                      
where  1Σ  is the epicardial surface, and ],0[ T  is the time interval during a cardiac cycle composed 
from a systole phase and a diastole phase. 

 
Fig.  2.   Representations of endocardium, epicardium and the surface where only radial displacement is allowed.  

 The initial conditions are given by 
                                     )()0,( 0 xpxp = , 1Σ∈x , 3,2,1=k , ],0[ Tt ∈ , 

0)0,( kk uxu =  , 1Σ∈x , 3,2,1=k , ],0[ Tt ∈ , 
                                      0)0,( =xuk  , 13 Σ⊂Σ∈x , 3,2=k , ],0[ Tt ∈ ,  
                         
where  1Σ  is the epicardial surface, and ],0[ T  is the time interval during a cardiac cycle composed 
from a systole phase and a diastole phase. The systole is the contraction of the ventricle and the 
diastole is the relaxation of the ventricle. We have supposed that at the endocardial surface 1Σ  a 
uniform intraventricular pressure 0p  is applied as an external load on 1Σ (Fig.2). At the upper 
surface 13 Σ⊂Σ  of the heart only radial displacement 1u  is allowed. 

The expression 
E
W
∂
∂  is computed from [9] 
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where ix  are the Eulerian coordinates ( zxyxxx ≡≡≡ 321 ,, ). For specified form for ),,( vltA , 
)(φα and )(φβ  the analytical solutions of (14)-(16) are determined next.   Equations (11)-(14) are 

solved analytically by the cnoidal method [16, 17]. For specified values for controlling parameters 
{=P α , β , f

ra , g
ra , h

ra ,  the analytical solutions )( t,xzi , 4321 ,,,i =  are given by  
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where miα , mk , miγ , miλ and mC , 214321 ,m,,,,i ==  are 28 unknown constants evaluated by a 
genetic algorithm. 
 

 
Fig. 3. Variation of the displacement 1u  during a cardiac cycle in selected points. 

 

 
Fig. 4. Variation of displacement 2u during a cardiac cycle in selected points. 

 

The 
E
W
∂
∂  is computed for p = 90 points inside the volume V . In fig. 3 and fig. 4, the variation 

of displacements ),( txuk , 3,2,1=k  during a cardiac cycle calculated in selected points are 
presented.  
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3. CONCLUSION 

 
In this paper, the cnoidal method is applied to describe the behavior of the left ventricle. The 

left ventricle is modeled as a mixture of muscle and collagen fibers, coronary vessels, coronary 
blood and the interstitial fluid, so that its behavior results from a contractile motion of the muscle 
cells. The cnoidal method makes possible to describe the left ventricle motion as a superposition of  
cnoidal pulses. 
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