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Abstract This paper is dedicated to a porous thermoelastic material, namely a material with 
voids having a micropolar structure. In the set of constitutive variables we included a new 
variable, namely voidage time derivative. For the mixed initial-boundary value problem 
within this context, we formulate and prove an uniqueness result regarding the solution. We 
also study the decay of acceleration waves in this bodies with pores. 
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1. INTRODUCTION 

The considerations rom our study can be useful in other fields of applications which deal with 
porous bodies, as solid packed granular, geological materials, and so on. The first investigations on 
bodies with voids were made by Goodman and Cowin in [1]. In this granular theory the authors 
introduce a new degree of freedom to develop the mechanical evolution of porous bodies in which 
the interstices are voids material and the matrix material is elastic. This procedure is included also 
in the paper [2] of Cowin and Nunziato. There are many applications of this new theory in the study 
of geological materials like soils and rocks and artificial manufactured porous materials, like 
pressed powders and ceramics. Specific for bodies with voids is the fact that density can be written 
as the product of two sizes namely, the volume fraction and the matrix material (see also, [4], [5], 
[6]). In the theory from works [1] and [2], as well as in [3], the thermal effect is not taken into 
account. That is why it appears natural the generalization proposed in [7] in which thermoelastic 
bodies are considered. But in this last paper it is neglected the fact that the variations in the volume 
fraction lead to an internal dissipation of energy in the body. Other results for bodies with 
microstructure can be found in [8-15]. Our intentions in this paper is to generalize the theory set 
forth in papers [1] - [3] to cover the theory of bodies with voids and micropolar structure. To this 
aim we consider a new independent variable, namely the time derivative of the voidage, which 
allows us to take into account the inelastic effects.  

2. BASIC EQUATIONS 

We consider a domain D from the Euclidean three-dimensional space R3 which is occupied, at 
the initial moment t = 0, by a micropolar porous material. Assume that the border D∂  of D is a 
regular surface that allows the application of theorem of divergence. 
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Also, we denote the closure of B by B . The motion of the bodies is referred to a system of 
Cartesian axes Oxm; (i = 1, 2, 3) and the Cartesian vector and tensor notation is adopted. For the 
derivative with respect to time variable we will use a superposed dot and for the partial derivatives 
with respect to the spatial variables we will use a comma followed by a subscript: f, i. As usual, the 
Einstein summation rule is used, regarding the repeated indices. 
In the initial state of our configuration, we have the following relation: 

ooo νγρ = , (1) 

where ρ  is the bulk density, γ is the matrix density and ν  is the volume fraction and suppose 
that oρ , oγ  and oν _0 are spatially constants. 

In order to characterize the evolution of the thermoelastic micropolar body with voids, we will 
use the following independent variables: 
- )t,x(vm - the components of the displacement vector; 
- )t,x(mϕ  - the components of the microrotation vector; 
- ϑ  - the variation of the temperature from the initial temperature To; 
- σ  - the fraction of change in volume. 

We will assume that our initial body has no stress, has no intrinsic equilibrated force and have 
no ux rate. For this reason and taking into account the fact that we will make the considerations 
only in the context of a linear theory, we deduce that it is very natural that the energy function can 
be written in the following form: 
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By using a suggestion given in [2], we will use the notation σω −=f to designate the 
dissipation, as we already told, consider of the inelastic evolution of the pores. In this notation ω  
is considered a nonnegative constant. By using the energy function, with the help of the procedure 
from [1-3] we deduce the next constitutive relations, which give 

ϑβσσεσετ ijk,ijkijnijijmnijmnmnijmnij DCBBeA −++++= , (3) 

ϑασσεµ ijk,ijkijmnijmnmnmnijij ECCeB −+++= , (4) 

ϑσεσ mmmnmnimnmnij,ijm adEeDAh −+++= , (5) 

ϑσξσε mdCeBg i,mijijijij +−−−−= ,     (6) 

ϑσσεαβη came i,mijijijij ++++= , (7) 

n,mnm kq ϑ= , (8) 

where mne  and mnε are the tensors of the strain and these are defined by means of the following 
kinematic equations: 

ooi,jijkjiki,jij ,TT,,eue ννσϑϕεϕ −=−==+=  . (9) 
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By using the procedure suggested in the paper [3] by Nunziato and Cowin, we can deduce the 
following basic equations: 
- the motion equations: 

mmj,ij uF ρρτ =+  ; (10) 

jijmjkijkj,ij IM ϕρτεµ =++ ; (11) 

- the equation of the equilibrated forces: 

σρκρ =++ Lgh i,i ; (12) 

- the equation of energy: 

rqT i,io ρηρ += . (13) 

 
The significance of the above notations is as follows: 
ρ - density (which is constant); 
η  - entropy; 

oT - initial temperature (a positive constant); 

mnI - tensor of inertia; 
κ - inertia of the equilibrated forces; 

mv - vector of displacement ; 

mϕ - vector of microrotation; 
ϕ  - variation of the distribution initial state oϕ ; 
σ  - variation of the volume fraction from the initial state; 
ϑ  - variation of the temperature from the initial temperature oT ; 

ijij ,e ε - tensors of the strain; 

ijτ - stress tensor; 

ijµ - couple stress tensor; 

mh - vector of equlibrated stress; 

mq - vector of heat flux; 

mF - body forces; 

mM - body couple; 
 r - supply of heat; 
 g-the intrinsic equilibrated force; 
 L-the extrinsic force; 
 ijijmnijmn k,.......,B,A  -the coefficients that characterize the elastic properties of the material 
which the following relations of symmetry: 

jiijmnijijmnmnijijmn kk,CC,AA === . (14) 

Based on the inequality of entropy it results: 

01 2 ≤−− σωϑϑ j,i,ij
o

k
T

 .    (15) 
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The equation of the equilibrated force (12) is motivated in [16] and [17] using an argument of 
the variational type and the equations (10) and (13) have a shape similar to those of the classical 
case. In order to complete the mixed initial-boundary value problem from the context of the theory 
of micropolar thermoelastic bodies with voids, we must introduce the the boundary relations and 
initial data. Regarding the boundary conditions, we must indicate the supplementary data for the 
specific surfaces included in the boundary D∂  of the body D and, also, for an interval of time on 
which is defined the solution. Further, we must give the initial value of the temperature. As such, 
we impose the next initial data: 

Bx,)x(u),x(u,)x(u),x(u mmmm ∈== 10 00  , (16) 

Bx,)x(),x(,)x(),x( mmmm ∈== 10 00 ϕϕϕϕ  ,    (17) 

Bx,)x(),x(,)x(),x(,)x(),x( ∈=== 100 000 σσσσϑϑ  , (18) 

and the boundary relations: 

mm uu =  on ),0[1 otD ×∂ , mlklk tnt =≡τ  on ),0[1 o
c tD ×∂ ; (19) 

mm ϕϕ =  on ),0[2 otD ×∂ , klklk mnm =≡ µ  on ),0[2 o
c tD ×∂ ;   (20) 

σσ =  on ),0[3 otD ×∂ , hnhh mm =≡  on ),0[3 o
c tD ×∂ ; (21) 

mϑϑ =  on ),0[4 otD ×∂ , qnqq mm =≡  on ),0[4 o
c tD ×∂ , (22) 

where 1D∂ , 2D∂ , 3D∂  and 4D∂ with respective complements cD1∂ , cD2∂ , cD3∂  and cD4∂  are 
surfaces from D∂ , ( )mnn =  is the unit normal outward to to the exterior of D∂ , ot is a fixed 
initial time which can be infinite, 0

mu , 1
mu , 0

mϕ , 1
mϕ , 0ϑ , 0σ , 1σ , mu , mt , mϕ , mm , σ , ϑ , q  

and h are given functions in all their domains of definition. 
The system of fields ( ),,,u mm ϑσϕ is called solution for the mixed initial-boundary value 

problem in the context of theory of thermoelastic micropolar bodies with pores, if it satisfies the 
system of  equations (10-13) for all ( ) ),0[, oo txt =Ω∈ , the boundary relations (16-18) and the 
initial data (19-22). With the help of equations (3-8) and (9), from equations (10-13) we are led to 
next system of equations: 

mjijkijkijmnijmnmnijmnij FDBBeAu ρϑβσσερ +−+++= ,, )(   ;  (23) 

;)(
)(

,

,,

mjkmjkmjkmnjkmnmnjkmnijk

jijkijkijmnijmnmnmnijjij

MDBBeA
ECCeBI

ρϑβσσεε

ϑασσεϕ

+−++++

+−+++=
 (24) 

;
))(

,

,,

ϑσξσερ

ϑσσεσρκ

mdCeBL
aAdEeD

imijijijij

jmjijmmnmnimnmni

+−−−−+

+−+++=
 (25) 

( ) i,mijijijij
o

i,j,ij
o

amer
T

k
T

a σσεαβϑ
ρ

ϑ 

 −−−−+=
11

. (26) 



27 Marin Marin, Sorin Vlase, Georgiana Precup  

3. BASIC RESULTS 

Our first main result from this section is regarding the uniqueness of solution for the above 
defined mixed problem. To this aim we will use an energetic method. Assume that our problem 
admits two solutions ( ))1()1()1()1( ,,, ϑσϕiiu  and ( ))2()2()2()2( ,,, ϑσϕiiu  which correspond to the same 
solid D, to the same volume force iF , the same volume couple iM , the same extrinsic force L and 
the same supply of the heat r. Each solution has a suitable set of boundary relations and a suitable 
set of initial data, similar to those from of (16-22). Taking into account the linearity of our problem 
(the linearity of the differential equations and the linearity of conditions), we can easy deduce that 
the difference of two solutions satisfies also our problem, but this solution is corresponding to zero 
volume force, volume couple, supply of the heat, zero extrinsic body force and zero initial and 
boundary data. 

We will denote by ( )ϑσϕ ,,, iiu the difference of the above two solutions, namely: 
)1()2()1()2()1()2()1()2( ,,, ϑϑϑσσσϕϕϕ −=−=−=−= iiiiii uuu  . (27) 

All quantities corresponding to the difference of the two solutions will also be marked 
with a superposed bar, for instance, )1()2(

ijijij τττ −= . 
As such, the system of differential equations for the difference solutions becomes: 

mjij uρτ =,  , (28) 

jijjkijkjij I ϕτεµ =+,  , (29) 

σρκ =+ gh ii,  ,  (30) 

iiqT ,0 =ηρ   .   (31) 

Now, we will formulate and demonstrate the result of uniqueness. To this aim we introduce 
the Biot's potential 

( )ηερ 0TU −=  ,   (32) 

where η  is the entropy and ε  is the density of internal energy. 
Taking into account the Helmholtz's function, that is, the density of energy function Ψ , we deduce 
that: 

ηεψ T−= . (33) 

Now, by considering (32) and (33) we can eliminate ε  and obtain: 
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Let us define the kinetic energy K by: 

( )2

2
1 σϕϕρ  kIuuK jiijii ++=  . (35) 
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The estimation from the following theorem is an auxiliary result necessary to demonstrate the 
theorem of uniqueness. 
 

Theorem 1. Let us an arbitrary solution ( )ϑσϕ ,,, mmu  of our mixed problem, defined by the 
system of equations (23-26) and the conditions (16-22). 
Then we have the following form of the equation of energy: 

( ) +

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Proof. Considerind the constitutive relations (3-8) and taking into account the relations of 
symmetry (14), we are led to following identity: 
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Now, we will use the motion equations (10), the energy equation (13), the equation of the 
equilibrated forces (12) and the kinematic relations (9) in order to obtain the following equality: 
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From (37) and (38) it is no dificult to obtain: 
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Finally, we integrate over D the equality (39) and so we obtain the estimate result (36) and we 
end the proof of Theorem 1. ■ 
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The auxiliary result of Theorem 1 is the basis for proving the uniqueness result of the 
following theorem. 
 

Theorem 2. We suppose that the Biot's potential U is a non-negative function. Then the mixed 
problem, consistings in the equations (23-26), the boundary relations (19-22) and the initial data 
(16-18), admits at most one solution. 

Proof. Consider two solutions ( ))1()1()1()1( ,,, ϑσϕiiu  and ( ))2()2()2()2( ,,, ϑσϕiiu  of our mixed 
problem and suppose that these solutions correspond to the same charges LMF ii ,,  and r satisfy 
same boundary relations similar to those from (19-22). For the difference of these two solutions, 
denoted by ( )ϑσϕ ,,, iiu  the estimate (36) reads: 

( ) dVq
T

dVKU
dt
d

B iB ∫∫ 







−−=+ 2

,
0

1 σωϑ   .   (40) 

If we take into account (15), we deduce: 

( ) 0≤+∫ dVKU
dt
d

B
 ,   (41) 

from where, by integrating on the interval ],0[ ot , we are led to the inequality: 

( ) ( )( ) ( ) ( )( )dVtKtU
dt
ddVKU

dt
d

BB ∫∫ +≥+ 00 .  (42) 

But the solutions ( ))1()1()1()1( ,,, ϑσϕiiu  and ( ))2()2()2()2( ,,, ϑσϕiiu  satisfy the same initial data, so we 
can deduce that the difference ( )ϑσϕ ,,, iiu  satisfies the zero initial data, i.e. 

0===== iijijii qu µτϕ  on ],0[ otD×∂ , 
as such, from (42) we obtain: 

( )dVtKtU
dt
d

B∫ +≥ )()(0 .   (43) 

But from (32) and (35) we deduce that the quadratic form )(tU  and )(tK  are positive definite 
and so from (43) it results that )(tU  and )(tK  must be null on all domain D. But, in this way, the 
difference of solutions must be null on all domain D, for any times [ ]0,0 tt∈ . So, the proof of 

Theorem 2 is complete. ■ 

4. CONCLUSION 

Within the theory of porous thermoelastic materials, we formulate and prove an uniqueness 
result and analyze the decay of dilatational acceleration waves. 
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