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Abstract The paper presents a comprehensive analysis, together with the derivation of a 
closed-form solution to the two-body problem in rotating non-inertial reference frames. By 
using an efficient tensor mathematical instrument, which is closely related to the attitude 
kinematics methods, the motion in the rotating non-inertial reference frame is completely 
solved. The closed-form solutions for the motion in the non-inertial frame, the motion of 
the mass center, and the relative motion are presented. Dynamical characteristics similar to 
linear momentum, angular momentum, and total energy are introduced. 
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1. INTRODUCTION 

This paper studies the two-body problem in non-inertial rotating reference frames, offering its 
solution in the general case. 

The mathematical model for the two-problem in non-inertial rotating reference frame is 
represented by the initial value problems:    
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where kr  denotes the position vector, kv  the velocity vector of the particle , 1, 2kP k = , related to 
the reference frame where the motion takes place, km  the masses of the two particles and ω  the 
angular velocity of the non-inertial reference frame where the motion takes place. The vectorial 
map ω  is supposed to be differentiable. ijF  denotes the force that actions on the particle iP  due to 

the interaction with the particle , , , 1, 2jP i j i j≠ = . From the reciprocal interaction’s principle: 

12 21+ =F F 0  (3) 
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( )12 1 2× − =F r r 0  (4) 

We will prove that the two-body problem in non-inertial reference frames may be solved 
exactly like in the inertial case, by solving two particle problems: 

1.  The motion of the mass center. 
2.  The relative motion of one particle related to another, for example the motion of particle 2P  

related to 1P  (Fig. 1). It is described by the vectorial map 2 1= −r r r , where 2r  is the 
solution to the initial value problem (2) and 1r  to the initial value problem (1). 

Section 2 introduces the tensorial 
instrument used in this paper. It is based on 
proper orthogonal tensorial maps and skew-
symmetric tensorial maps. A differential 
vectorial operator is introduced, and it is 
useful in studying an arbitrary motion related 
to a non-inertial reference frame in general. 

Using the adequate tensorial instrument 
introduced in Section 2, Section 3 offers: 

• An explicit solution for the center of 
mass motion is given, in the general 
case. 

• A representation theorem of the relative 
motion is offered; it reduces the 
problem to the study of one particle 
motion in a central positional force 
field. 

• New prime integrals are obtained, 
replicas to angular momentum and 
energy conservation. 

A new prime integral for the system 
motion is offered, replicas to impulse, angular momentum and kinetic energy theorems. The motion 
of the system related to the mass center reference frame is also studied. 

Let us remark that a comprehensive study on the two-body problem in non-inertial reference 
frames misses from the classical textbooks ([1], [2], [4], [5], [6], [7], [8]). The reason could be the 
very unusual form of the prime integrals.  

2. TENSORIAL CONSIDERATIONS 

This section introduces the main mathematical instruments used in this paper. A tensorial map 
and a vectorial differential operator will be defined. 

We will denote: 
• 3V  the three-dimensional vectorial space. 
• 3V  the set of the maps defined on the positive real semiaxis with values in 3V . 
• 3SO  the special orthogonal group of second order tensors. 
• 3SO  the set of the maps defined on the positive real semiaxis with values in 3SO  
• 3so  the Lie-algebra of skew-symmetric second order tensors. 
• 3so  the set of maps defined on the positive real semiaxis with values in 3so . 

 
Fig. 1 The two-body problem in a non-inertial reference 

frame 
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2.1 A Tensorial Operator 
The rotation motion with arbitrary angular velocity ω  will be related to orthogonal tensorial 

maps. 
Lemma 1: The initial value problem: 

( )0 3t
=

=

Q Qω
Q I





 (5) 

with 0 0t ≥  has a unique solution 3∈Q SO  for any continuous map 3∈ω so . 
Proof. It is obvious that (5) has a unique solution ( )t=Q Q . It only remains to prove that this 

solution Q  is in 3SO , meaning that 3
T =Q Q I  and ( )det 1=Q . We have that 

( ) 3
T T T T Td

dt
= + = − =QQ QQ QQ QωQ QωQ 0 

  , so TQQ  is a constant differentiable function that 

satisfies ( )( )0 3
T t =QQ I . Then, 3

T =QQ I . Using that ( )det Q  is also a continuous function which 

satisfies ( ) { }det 1,1∈ −Q  and ( )( )0 3det det 1t = =Q I , it comes that det 1=Q . So 3∈Q SO .□ 
Remark 2: Lemma 1 is the famous Darboux problem (see [3]): finding the rotation tensor 

when knowing the instantaneous angular velocity. The link between the rotation tensorial map (also 
called orthogonal tensorial map) and the skew-symmetric tensor associated to the angular velocity 
vector is given by the initial value problem (5). 

The solution to the initial value problem (5) will be denoted ωF . The next result presents the 
properties of this tensorial orthogonal map. 

Lemma 3: The map ωF  satisfies: 
1. ωF is invertible. 
2. ( ) 3, ,⋅ = ⋅ ∀ ∈ω ωF u F v u v u v V ; 

3. ( ) 3,= ∀ ∈ωF u u u V ; 

4. ( ) ( ) 3, ,× = × ∀ ∈ω ω ωF u v F u F v u v V ; 

5. ( ) ( ) 3,d
dt

= + × ∀ ∈ω ωF u F u ω u u V

 , differentiable. 

6. ( )( ) ( )
2

32 2 ,d
dt

= + × + × × + × ∀ ∈ω ωF u F u ω u ω ω u ω u u V

  , two times differentiable. 

The proof to Lemma 3 involves only elementary computations and it will be skipped. 

2.2 Comments and Remarks 
1. We will denote: 

( ) 1 not−
−=ω ωF R  (6) 

As ωF  is the solution to the initial value problem (1), it results that −ωR  is the angular velocity −ω  
rotation tensor and it is the solution to the initial value problem: 

( )0 3.t
+ =

=

Q ωQ 0
Q I





 (7) 
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2. In case ω  has fixed direction, ω=ω u , with u  constant unit vector and ω: →  , as 
( ) ( ) ( ) ( ) ( )1 2 2 1 1,2,t t t t t= ∀ ∈ω ω ω ω   

 , (see [3]), then ( )t−ωR  has the explicit form: 

( ) ( )( ) ( ) ( )
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2
3 2
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t t
d

ϕ ϕ
ξ ξ ω−

−
= − = − +∫ωR ω I ω
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where ( ) ( )
0

ω
t

t
t dϕ ξ ξ= ∫ . 

In case ω  is constant, ( )t−ωR  has the explicit form: 
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Remark 4: Eqs. (8) and (9) give the explicit solution to Darboux problem in case vector ω  
has fixed direction, respectively it is constant. 

2.3 A Vectorial Operator 
We introduce a differential operator which is related to the angular velocity ω  of the reference 

frame to whom an arbitrary vector is related. It is a derivation-like operator, and its use will be 
revealed further. 

We define operator ( ) 3 3:′ →V V   by: 

( ) ( ) ( )′ = + ×ω


. (10) 

For any arbitrary vectorial map 3: →u V

 , it will hold: 

′ = + ×u u ω u . (11) 

The next result presents the properties of this operator, together with the link between ( )′ and 

ωF . 
Lemma 5: The following affirmations hold true: 
1. ′ =ω ω ; 

2.  ( ) ( ) ( )2
3, , C′ ′ ′+ = + ∀ ∈u v u v u v V ; 

3.  ( ) ( ) ( ) ( )2
3, , :Cλ λ λ λ′ ′= + ∀ ∈ ∀ →u u u u V



  , differentiable; 

4.  ( ) ( ) ( )2
3, , C′ ′ ′× = × + × ∀ ∈u v u v u v u v V ; 

5.  ( ) ( ) ( )2
3, ,d C

dt
′ ′⋅ + ⋅ = ⋅ + ⋅ = ⋅ ∀ ∈u v u v u v u v u v u v V

  ; 

6.  ( ) ( ) ( )2
32 , C′′ = + × + × × + × ∀ ∈u u ω u ω ω u ω u u V

  ; 

7.  ( ) ( ) ( ) ( )2
3,d C

dt
′= ∀ ∈ω ωF u F u u V . 

 
The proof to Lemma 5 involves only elementary computations and it will also be skipped. 

An interesting property of operator ( )′  is revealed in next Lemma. 
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Lemma 6: Let 3: + →u V

   be a differential vectorial valued map such as: 

( )0 0, t′ = =u 0 u u . (12) 

Then: 

0−= ωu R u  (13) 

where ( )T
−ωR  is the solution to the initial value problem (5). 

Proof. From ( )0 0 0
d
dt − − −= = −ω ω ωR u R u ωR u

 , it results  ( ) ( )0 0
d
dt − −+ × =ω ωR u ω R u 0  . The 

unique solution of the initial value problem (12) is 0−= ωu R u .□ 

Remark 7: From Lemma 6 it results that if a vectorial map 3: + →u V

  satisfies ′ =u 0 , 
then vector u  is the rotation with angular velocity −ω  of a constant vector ( )0 0t=u u . It will be 
useful in giving a geometrical interpretation for the prime integrals that occur in the two-body 
problem in non-inertial reference frames. 

3. THE STUDY OF THE TWO BODY PROBLEM IN ROTATING NON-INERTIAL 
REFERENCE FRAMES 

This is the main section of this paper: the core of the theoretical study we offer here. The 
motion of the mass center, the relative motion of a particle related to another, its prime integrals, 
system-related prime integrals and the motion related to the center mass non-inertial reference 
frame are studied. The essential result is Theorem 10, which relates the inertial and the non-inertial 
two-body problems via an orthogonal proper tensorial map. 

3.1 The Mass Center Motion 
This section offers an exact vectorial solution in the mass center motion problem. We denote 

by: 

1 1 2 2

1 2
C

m m
m m
+

=
+

r rr  (14) 

the position vector of the mass center of the two particles related to the non-inertial reference frame 
where the motion takes place. It results that 

1 1 2 2

1 2
C

m m
m m
+

=
+

r rr
 

 . (15) 

By summarizing eqs (1) and (2) and taking into account conditions (3) and (4), it results that 
the initial value problem that describes its motion is: 
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Theorem 8: The solution to the initial value problem (16) is 

( ) ( )( ) [ )0 0 0 0
0 0, ,C C C Ct t t t t−

 = + + × − ∈ +∞ ωr R r v ω r , (17) 

where ( )0
0t=ω ω . 

Proof.  Applying operator ωF  to the initial value problem (17) and using Lemma 3, it results 
that the initial value problem (17) becomes: 

( )
( )

0
0

0 0 0
0

,

,C

C C

t

t

=

 =


= + ×

ρ 0

ρ r

ρ v ω r





 (18) 

where 
not
= ωρ F r . The solution to the initial value problem (18) is 

( ) ( )( ) [ )0 0 0 0
0 0, ,C C Ct t t t t= + + × − ∈ +∞ρ r v ω r . (19) 

Taking into account that ( ) 1−
−=ω ωF R , the conclusion of the theorem is proved. □ 

 Remark 9: 
1. As ( ) ( )3,− = ∀ ∈ωR u u u V , it results that at any moment of time the mass center is on a 

variable sphere that has a linear-increasing radius: ( )( )0 0 0 0
0C C C t t+ + × −r v ω r . 

2. In case 0 0 0
C C+ × =v ω r 0 , the motion of the mass center takes place on a sphere with radius 

0
Cr . 

3. In case vector ω  has fixed direction, the law of motion of the mass center may be written 
explicitly, taking into account the expression (8) of the tensorial map −ωR . 

4. The hodograph of the vectorial map that models the mass center motion is a curve that is 
situated on a ruled surface generated by the rotation with angular velocity −ω  of the straight line: 

( )( ) [ )0 0 0 0
0 0, ,C C C t t t t= + + × − ∈ +∞r r v ω r . (20) 

Considering the non-inertial reference frame having only a rotation motion, the straight line 
defined in eq (20) has a fixed point, so it generates a conical surface. We may then state that the 
motion of the mass center may be decomposed into two: 

• a rectilinear uniform motion with velocity 0 0 0
C C+ ×v ω r  

• a rotation with angular velocity −ω  of the straight line where the rectilinear motion takes 
place. 

The trajectory generated by these two independent motions is situated on a conical surface. 

3.2 The Relative Motion 

The motion of particle ( )2 2P m  related to particle ( )1 1P m  is described by the vectorial map: 

2 1= −r r r , (21) 

where 1r , 2r   are the solutions to thew initial value problems (1), respectively (2). Dividing eq (1) 
by 1m , eq (2) by 2m , and using conditions (3), (4), it results that vector r  satisfies: 
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( ) 212 ,
m

+ × + × × + × =
Fr ω r ω ω r ω r    (22) 

where: 

1 2

1 2

m mm
m m

=
+

 (23) 

denotes the reduced mass of the system. Vector 21F  represents a central isotropical force and it may 
be written: 

( )21 f r
r

=
rF  (24) 

where [ )0: ,f t +∞ →  is a scalar map. It results that the relative motion of ( )1 1P m  related to 

( )2 2P m  is described by the initial value problem: 

( ) ( )

( )

( )

0 0 0
0 2 1

0 0 0
0 2 1

2 ,

.

not

not

f r
m r

t

t

+ × + × × + × =

 = − =

 = − =

rr ω r ω ω r ω r

r r r r

r v v v

  



 (25) 

3.2.1 A Relative Motion Representation Theorem 
The initial value problem (25) describes the motion of a particle having the mass equal with 

the reduced mass of the system related to the non-inertial reference frame the two-body problem is 
related to. The solution to the initial value problem (25) is obtained by using the next Theorem. 
This is a result that may be applied in the general motion related to a non-inertial reference frame. 
In fact, it relates the inertial and the non-inertial motion via proper orthogonal tensorial maps. 

Theorem 10: The solution to the initial value problem (25) is obtained by applying operator 
−ωR  to the solution to the initial value problem: 

( )

( )
( )

0
0

0 0 0
0

,

,

f r
m r

t

t

=

 =


= + ×

rr

r r

r v ω r





 (26) 

where ( )0
0t=ω ω  

Proof. Eq (25) may be written using the previous considerations: 

( ) .
f r
m r

′′ =
rr  (27) 

Applying operator ωF   to eq (27) and using that 

( ) ( )
2

2 ,d
dt

′′=ω ωF r F r  (28) 

it results: 
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( ) ( ) .
f r
m

′′ = ω
ω

ω

F rF r
F r

 (29) 

Denoting = ωρ F r , the link between the two differential equations becomes evident. The initial 
conditions for the new initial value problem become: 

( )
0

0
0 ,t tt == =ωρ F r r  (30) 

( ) ( )
0

0 0
0 t t

dt
dt == = + ×ωρ F r v ω r  (31) 

Using eq (6), it results that applying operator ( ) 1−
− =ω ωR F  to the solution to the initial value 

problem (26), the solution to the initial value problem (25) is obtained: 

 .−= ωr R ρ  (32) 

The proof is finalized. □ 
Remark 11: Theorem 10 offers a simple way of solving the two-body problem in non-inertial 

reference frames: 
• the initial value problem with modified initial conditions (26) is solved. 
• the tensorial operator −ωR  is applied to the solution to the initial value problem (26).  The 

solution to the initial value problem (25) is obtained. 

3.2.2 The Prime Integrals of the Relative Motion 
This section studies the prime integrals of the initial value problem (25).  They are deduced 

using the tensorial instruments introduced in Section 2. We use the following denotation: 

( )0 0 0 0
0

not
= × + ×Ω r v ω r  (33) 

Theorem 12: The initial value problem (25) has the prime integrals: 

( ) 0

not

−× + × = =ωr r ω r R Ω Ω  (34) 

(Replica to angular momentum conservation); 

( ) ( ) ( )
2

2, , constant
2 2

notm mm f r dr h+ + × − = =∫
r ω r r ω r


  (35) 

(Replica to energy conservation). 

Proof. Using operator ( )′  introduced in Section 2, it results: 

( )′′ ′′× = × =r r r r 0  (36) 

and from Lemma 6 it results: 

( )
0 0t t− = −

 ′ ′× = × = ω ωr r R r r R Ω . (37) 

The second prime integral is deduced by derivation. □ 
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Remarks: 
1.  The prime integral (34) shows that the hodograph of the vectorial map ( )= × + ×Ω r r ω r  is 

a spherical curve, as it is the rotation with angular velocity −ω  of a constant vector 0Ω  . 
In case vector ω  has fixed direction, the hodograph of Ω  is a circular section, as it is the 
rotation of a constant vector around a fixed axis. Vector Ω  "sweeps" the lateral surface of 
a right circular cone with angular velocity −ω  . As it results from eq (8), its explicit 
expression is: 

( ) ( ) ( ) ( ) ( )0 00
0 02 2

sin cost t t tϕ ϕ ϕ ϕ− −   ⋅    = − × − × ×
Ω ωΩ ω ω Ω ω ω Ω
ω ω ω

 (38) 

where ( ) ( )
0

t

t
t dϕ τ τ= ∫ ω . 

2.  The second prime integral (35) has energetic signification.  It emphasizes the existence of a 
potential energy role map: 

( ) ( ) ( ) ( )2, , , ,
2
mV t m f r dr= + × − ∫r r ω r r ω r  . (39) 

The prime integral (35) may be rewritten: 

( )2 , , constant
2
m V t+ =r r r  . (40) 

If ω  has a constant direction, u  then ( ) ( )ωt t=ω u . As ( ) 0−× + × = ωr r ω r R Ω  , by dot-
multiplying this relation with ω  , we get: 

( ) ( ) ( )2 1
0 0 0, , −

− −+ × = ⋅ = ⋅ = ⋅ω ωω r r ω r R Ω ω Ω R ω Ω ω . (41) 

(If ω  has constant direction, then ( ) 1−
− =ω ωR R and =ωR ω ω ). So, ( ) ( )2

0, , + × = ⋅ω r r ω r Ω ω  
and in correlation with (39) we get: 

( ) ( )2
0

1
2

V m f r dr = ⋅ − × −   ∫Ω ω ω r . (42) 

In this case ( ),V V t= r . 

If ω  is a constant vector, from (42) it results: ( )V V= r  (the classical potential energy). 

3.2.3 The Laws of Motion in the Non-Inertial Reference Frame 
Knowing the solutions of the uni-particle problems described by eqs (16) and (25) solves the 

laws of motion problem for the particles ( )1 1P m , ( )2 2P m  in the non-inertial reference frame where 
the motion takes place. From relations (14) and (21) it results: 

2
1

1 2
C

m
m m

= −
+

r r r , (43) 

1
2

1 2
C

m
m m

= +
+

r r r . (44) 
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The vectorial map Cr  is the solution of the initial value problem (16) and has the expression 
from eq (17): 

( ) ( )( ) [ )0 0 0 0
0 0, ,C C C Ct t t t t−

 = + + × − ∈ +∞ ωr R r v ω r . (45) 

The vectorial map r  is the solution to the initial value problem (25), that is determined by 
applying tensor −ωR  to the solution to the initial value problem (26). 

3.3 The Prime Integrals of the Two-Body System 
This Section studies the global mechanical characteristics of the whole system of particles. By 

introducing replicas for the classic mechanical characteristics of a system of particles (impulse, 
angular momentum, kinetic energy), interesting prime integrals are deduced. 

It is known that the classic (inertial) mechanical characteristics of a two-particle system are: 
2

1
k k

k
m

=

=∑P r  (46) 

(Impulse); 

( )
2

1
k k k

k
m

=

= ×∑K r r  (47) 

(Angular momentum); 
2

2

1

1
2kin k k

k
E m

=

= ∑ r  (48) 

(Kinetic energy). 
In a non-inertial reference frame, the conservation laws of these quantities do not apply. By 

defining: 

( )
2

1
k k k

k
m

=

= + ×∑H r ω r  (49) 

(Generalized impulse); 

( )
2

1
k k k k

k
m

=

= × + ×  ∑L r r ω r  (50) 

(Generalized angular momentum); 

( )
2

2

1

1
2 k k k

k
T m

=

= + ×∑ r ω r  (51) 

(Generalized potential energy), the following result may be stated: 
 

Theorem 13: The following affirmations hold true: 

+ × =H ω H 0  (52) 

(Replica to impulse conservation law); 

+ × =L ω L 0  (53) 

(Replica to angular momentum conservation law); 



41 A tensor closed-form solution of two-body problem in rotating reference frame  

( ) constantT f r dr− =∫  (54) 

(Replica to kinetic energy conservation law). ( )f r dr−∫  represents e interaction potential energy of 
the system. 

The proof of Theorem 13 is made by elementary computations, and it will be skipped. 
Remark 14: 

1. Eq (52) may be rewritten using operator ( )′  
′ =H 0 . (55) 

Using Lemma 6, it results that the replica to impulse conservation law may be written: 

( )
2

0 0 0
0

1
k k k

k
m− −

=

 = = + ×  
∑ω ωH R H R v ω r . (56) 

2. Eq (53) may be rewritten using operator ( )′  
′ =L 0 . (57) 

Using Lemma 6, it results that the replica to angular momentum conservation law may be 
written: 

( )
2

0 0 0 0
0

1
k k k k

k
m− −

=

  = = × + ×   
∑ω ωL R L R r v ω r . (58) 

It is natural to give now the replicas to the general laws of conservation in the classic case. 
From definitions (49), (50), (51), from relations: 

( )1 2 Cm m= + + ×H P ω r  (59) 

0= +L K I ω  (60) 

kin CT E V= +  (61) 

with: 
2

0
1

T
k k k

k
m

=

=∑I r r  . (62) 

( ) ( )22

1
, ,

2
k

C k k k k
k

V m m
=

 ×
= + 

  
∑

ω r
ω r r  (63) 

( Cr  denotes the position vector of the mess center related to the non-inertial frame, 0I  is the inertia 
tensor related to the non-inertial frame), we state: 

Corollary 15: The prime integrals of the two-particle system are: 

( )1 2 constantCm m+ + × =P ω r ; (64) 

( )
2

1
constantk k

k=
+ × × =∑K r ω r ; (65) 
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( ) ( ) ( )
22

1
, , constant

2
k

kin k k k k
k

E m m f r dr
=

 ×
+ + − = 

  
∑ ∫

ω r
ω r r . (66) 

If vector ω  has fixed direction, the vectorial prime integrals (52) and (53) have explicit 
formulations: 

( ) ( ) ( ) ( ) ( )0 00
0 02 2

sin cost t t tϕ ϕ ϕ ϕ− −   ⋅    = − × − × ×
H ωH ω ω H ω ω H
ω ω ω

; (67) 

( ) ( ) ( ) ( ) ( )0 00
0 02 2

sin cost t t tϕ ϕ ϕ ϕ− −   ⋅    = − × − × ×
L ωL ω ω L ω ω L
ω ω ω

, (68) 

where: 

( )0 0t=H H ; (69) 

( )0 0t=L L . (70) 

The hodographs of vectors H  and L   are circular sections. H  and L  "sweep" the lateral 
surface of a right circular cone with angular velocity −ω . 

3.4 The Motion Related to the Mass Center Reference Frame 

The motion of the particles ( )1 1P m , ( )2 2P m  related to the non-inertial reference frame of the 
mass center may be completely described if the solutions to the initial value problems (16) and (25). 
We denote: 

*
1 1 C= −r r r ; (71) 

*
2 2 C= −r r r ; (72) 

From relations: 
* *

1 1 2 2m m+ =r r 0 ; (73) 

* *
2 1− =r r r ; (74) 

it results: 

* 2
1

1 2

m
m m

= −
+

r r ; (75) 

* 1
2

1 2

m
m m

=
+

r r . (76) 

Relations (75) and (76) represent the laws of motion of particles ( )1 1P m , ( )2 2P m  related to 
the non-inertial reference frame of the mass center. The initial value problems that describe their 
motion in this frame are ( 1, 2k = ): 
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( ) ( )

( )
( )

* *
* * * *

*

* 0 0
0

* 0 0
0

2 ,

.

k k
k k k k

k k

k k C

k k C

f r
m r

t

t

+ × + × × + × =

 = −


= −

rr ω r ω ω r ω r

r r r

r v v

  



 (77) 

The mechanical global characteristics of the system in this reference frame are: 

( )
2

* *

1

C
k k k

k
m

=

= + ×∑H r ω r  (78) 

(Generalized impulse); 

( )
2

* * *

1

C
k k k k

k
m

=

 = × + × ∑L r r ω r  (79) 

(Generalized angular momentum); 

( )
2 2* *

1

1
2

C
k k k

k
T m

=

= + ×∑ r ω r  (80) 

(Generalized kinetic energy). 
From relations (78)-(80), taking into account (75), (76), it results:  

C =H 0  (81) 

( )C m= × + ×  L r r ω r  (82) 

( )21
2

CT m= + ×r ω r  (83) 

where 1 2

1 2

m mm
m m

=
+

 is the reduced mass of the system and r  is the solution to the initial value 

problem (25). 
It results the vectorial prime integral of the motion: 

0
C C

−= ωL R L  (84) 

that shows that the hodograph of vector L  is a spherical curve.  If ω   has constant direction, this 
hodograph is a circular section; vector L  sweeps the surface of a right circular cone with angular 
velocity −ω  . From (82) results: 

0C⋅ =r L , (85) 

so a geometrical visualization of the motion may be given: the two particles are situated at any 
moment of time in a variable plane that is normal on vector L . It also results that the trajectories of 
the two particles are spatial homothetical to C curves, as follows from: 

* *2
1 2

1

m
m

= −r r . (86) 

The homothety ratio is 2

1

m
m

− . 
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Remarks: 
1. The trajectories are plane curves if and only if vector CL   has fixed direction, as follows 

from (85). The following result may be stated: 
Lemma 16: The trajectories in the two-body problem in the mass center non-inertial 

reference frame are planar if and only the conditions below are satisfied: 
(i) Vector ω  has fixed direction,  ( )ω t=ω u , with [ )0ω: ,t ∞ →  and u  constant unit 

vector. 
(ii) 0

C× =u L 0 , where ( )0 0
C C t=L L . 

Proof. “⇒ ” If the trajectory is a plane curve, it results vector CL  is constant, as it is normal on 

this plane and has constant magnitude.  It results 0 constantC
− =ωR L , so ( )0

Cd
dt − =ωR L 0 . It results 

0 0C
− =ωR L , so 0 0C

−− =ωωR L . Further: 0 0C
−× =ωω R L . It results 

C× =ω L 0 . (87) 

As vector CL  is constant, it results vector ω  has fixed direction, that of CL . As ( )ω t=ω u , 

from (87) it results 0
C× =u L 0 . 

“⇐” If conditions (i) and (ii) are satisfied, it results: 
From (i): − =ωR ω ω  and ( ) 1−

− =ω ωR R . 

From (ii): ( ) ( ) ( ) ( ) ( )1
0 0
C C C C−

−
 = × = × = × = × ω ω ω ω ω0 u L R u L R u R L R u R L  . It results 

further: ( ) ( ) ( )C C= × = ×ω ω ω0 R u R L R u L , so C× =u L 0 . It results vector CL  has constant 
direction. As it has constant magnitude, too, it results it is constant, so the trajectory is a planar 
curve. The proof is finalized. □ 

2. If the interaction forces between the particles depend only on the relative distance r, a scalar 
prime integral with energetic significance may be deduced: 

( ) constantCT f r dr− =∫ . (88) 

The equivalent form of eq (88) is: 

( ) ( ) ( )22 , , constant
2 2
m mm f r dr+ + × − =∫r ω r r ω r  . (89) 

Knowing that: 

2

2kin
mE = r  (90) 

is the kinetic energy of the system related to the non-inertial frame of the mass center and denoting: 

( ) ( ) ( ) ( )2, , , ,
2
mV t m f r dr= + × − ∫r r ω r r ω r  , (91) 

the generalized potential energy, relation (89) becomes: 

( ), , constantkinE V t+ =r r . (92) 

Eq (92) shows that in the two-body problem in the arbitrary rotating non-inertial reference 
frame of the mass center (with angular velocity ω ), there exists the prime integral (92) with the 
generalized potential energy introduced in eq (91). 
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In case the angular velocity ω  has constant direction, the prime integral (92) becomes: 

( ), constantkinE V t+ =r , (93) 

( ) ( ) ( )

( )

2
0

0 0 0 0
0

1, ,
2

V t m f r dr = ⋅ − × −  

= × + ×

∫r Ω ω ω r

Ω r v ω r
 (94) 

and in case ω  is constant: 

( ) constantkinE V+ =r , (95) 

( ) ( ) ( )2

2
mV f r dr= − × − ∫r ω r . (96) 

4. CONCLUSIONS 

The study of the two-body problem in a rotating non-inertial reference frame was approached 
comprehensively, and its closed-form solution was determined. The motion of the center of mass, 
the relative motion of the two bodies in the non-inertial rotating reference frame were approached 
by using the same tensor instrument. The results were presented in vectorial coordinate-free 
expressions. First integrals, equivalent to the classical dynamical characteristics of the motion 
(linear momentum, angular momentum, total energy), were determined. The present approach 
generalizes the classic two body-problem. Future works will study the same context for concrete 
forms of the interaction force (including the classic gravitational case), as well as several situations 
of other central forces. 
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