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Abstract This article discusses the local interaction simulation approach (LISA) for 
simulation of wave propagation in inhomogeneous media such as the layered plates. The 
method is applied to study the ultrasonic wave propagation in materials of arbitrary 
complexity and to solve some inverse problems of their characterization 
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1. INTRODUCTION 

Delsanto et al. have introduced in [1], [2] a method named the local interaction simulation 
approach (LISA) for simulation the propagation of ultrasonic wave in layered materials. The 
layered material is discretized in cells, each cell being associated to a layer with different 
mechanical properties. Each cell is put into a one-to -one correspondence to a processor of a parallel 
computer [3, 5]. The material properties are assigned as initial data to each processor. LISA aims to 
teach processors how the corresponding cells react to the arriving wave and propagate it to the 
neighbors by using a special interaction mechanism. LISA is efficient and flexible, especially in 
conjunction with parallel processing [6-10]. 

To explain the method, let us start with one-dimensional case, i.e. a layered plate with N  
homogeneous layers, each layer having the thickness nh , 1,2,...,n N=  [1]. The total thickness of 

the plate is 
1

N

n
n

h h
=

= ∑ . The mathematical model is based on the assumption that an ultrasonic 

longitudinal wave is transmitted through the plate, normal to its surface. Let us consider the case of 
a homogeneous, unstressed and isotropic single layer. The x -axis is in the direction of wave 
propagation, and 0x =  and x h=  represent two opposite surfaces of the plate. 

The equation of longitudinal elastic wave ( , )u x t  is 

( ) ,2 xxu uλ + µ = ρ, (1) 

where indexes represent the differentiation with respect to spatial coordinate, the superposed 
point means differentiation with respect to time, u  is the longitudinal displacement, ,λ µ  are the 
Lamé elastic constants, and ρ  is the material density. Let us proceed to define a grid in time and 
space. We note by δ the elementary time unit, so that the continuous time becomes tδ , 0,1,2...t = . 
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The propagation path is divided into N  cells of length h
N

ε = . Consequently, we have 

( , ) ( , ) ( , )t it x T X t h→ = δ ε , 0,1,2...t = . The nod points between cells are label with indices i , such 
that 1i =  corresponds to 0x = , and 1i N= +  to x h= , respectively. The index 0i =  is 
reserved for the input of the source pulse 

0 sourse( ) ( )u t u t= . (2) 

Here, ,i tu  is the value of ( , )u x t  in the point ( ,t iT X )  

0, 0 ( )tu u t= .  

The finite difference (FD) method plays an important role in solving differential equations. 
The Taylor expansion of a differentiable function ( )f x  

( ) ( ) ( ) ( ) ( )
2

' '' ( )....... ...
1! 2! !

n
nf x f x f x f x f x

n
ε ε ε

+ ε = + + + + + ,  

allows to extract the derivatives of different order by neglecting the terms in 2ε  and higher 
as 

( ) ( ) ( )' f x h f x
f x

h
+ −

≅ , ( ) ( ) ( )'

2
f x f x

f x
+ ε − − ε

≅
ε

. (3) 

For example, for ordinary differential equation ( ) ( )y x ay x b′ = + , the Euler method uses the 
finite difference (3) and the finite-difference equation can be written as 

( ) ( ) ( ( ) )y x h y x h ay x b+ = + + . The error between the approximate solution and the true solution is 
determined by the error that is made by going from a differential operator to a difference operator. 
The truncation error reflects the fact that a difference operator can be viewed as a finite part of the 
infinite Taylor series of the differential operator. 

Equation (1) may be written in finite-differences 

( ) ( ), 1 1, 1, , , 12 1i t i t i t i t i tu c u u c u u+ − + −= + + − − , (4) 

where the Courant constant c  is a free parameter 
2

L

c

vc
v

 
=  
 

,  2
Lv λ + 2µ
=

ρ
,  cv ε

=
δ

, (5) 

where Lv  is the longitudinal velocity and cv is the cell characteristic velocity. From the 
theory of finite differential equations we know that the best choice, to achieve a complete stability, 
is 1c = . In this case, the waves are propagating without any degradation. The iteration equation (4) 
becomes 

, 1 1, 1, , 1i t i t i t i tu u u u+ + − −= + − . (6) 

This equation ensures that the wave keeps motion without any alteration, with a complete 
cancellation of the neglected higher order terms. Indeed, if the waves travel forward we have 

1, , 1i t i tu u+ −=  from which it follows from (6) that , 1 1,i t i tu u+ −= . For 1c < , numerical errors begin to 
accumulate and propagate, so that the method works only for a limited number of time steps. If 

1c >  the divergence in the displacement amplitudes is observed.  From (6), an analogous iteration 
equation for stresses ,( 2 ) xuσ = λ + µ  is obtained 



 Rodica Ioan, Veturia Chiroiu and Dinel Popa  33 

, 1 1, 1, , 1i t i t i t i t+ + − −σ = σ + σ − σ . (7) 

The stresses from previously calculated displacement are calculated from 
1, ,

,

( 2 )( )i t i t
i t

u u+λ + µ −
σ =

ε
, where the index i  labels the cells for the stresses and the node-points 

for the displacements. 

Each layer n , of length nh  it is divided în nN  cells of length n
n

n

h
N

ε = , nN N= ∑ . We 

choose nε  so that  

2/ n n
n

n

λ + µ
ε δ ≥

ρ
. (8) 

The interface between the first two layers is marked with 1 1i N= + , and the interface 
between layers j  and 1j + , with 1ji N= + . For writing the recurrence relations at the interface 

between two layers of acoustic impedances nZ  and 1nZ +   ( 2
2

n n n
n n n

n n n

Z Sλ + µ ρ
= ρ =

ρ λ + µ
) 

we consider two points P and Q infinitely close to the interface, located on either side of it. At these 
points we impose the conditions of continuity of displacements and stresses 

( ) ( ) ( ) ' '
1 1 2 2, ( 2 ) ( 2 )P P Q QP Q I

u u u u uτ λ µ τ λ µ= = = + = = +   ,            (9) 

and have 
'

1
1 1 12

1 1

( 2 ) 2 2I I P
I

u u u u− −
λ + µ + = ρ ε ε 

 ,              (10) 

'
1

2 2 22
2 2

( 2 ) 2 2I I P
I

u u u u− −
λ + µ + = ρ ε ε 

 .             (11) 

By adding relations (10) and (11) we have 

( ) ( ) ( ) ( )
2 2

1 1 2 2
1 1 1, , 1,

1 1 1 2 2 2 1 1 2 2

2( 2 ) 2( 2 ) 2I I I I t I t I t Iu u u u u u u− − + −
λ + µ δ λ + µ δ

− + − = − +
ε ε ρ + ε ρ ε ε ρ + ε ρ

,    (12) 

where the recurrence relations results from the two-layer interface 
"' '

, 1 1 1 , 1I t I I I I I I I tw t w t w t w w+ + − −= + + − ,             (13) 

with 

( )
2

'' 1 1

1 1 1 2 2

2( 2 )
It

λ + µ δ
=
ε ε ρ + ε ρ

 
( )

2
' 2 2

2 1 1 2 2

2( 2 )
It

λ + µ δ
=
ε ε ρ + ε ρ

 " '2I I It t t= − − .   (14) 

When ( )/ 2 /
n nc n l n n nv v= ε δ = = λ + µ ρ for each layer, then (10) and (11) are  

'
1 1 1 1

1 1 12 2
1 1 1

2( 2 ) 2 2I I P t t
I

u u u Z u u uu− + − − δ − +
λ + µ + = ρ = ⋅ ε ε ε δ 

 ,        (15) 



On the local interaction simulation approach (LISA) with application to a layered plate 34 

'
1 2 1 1

2 2 22 2
2 2 2

2( 2 ) 2 2 QI I t t
I

ww w Z w w ww+ + −
 − δ − +

λ + µ − = ρ = ⋅ ε ε ε δ 
 ,      (16) 

( ) ( ) ( ) ( )1 1 2 1 1 2 1 12 2 2I I I I t tZ u u Z u u Z Z u u u− + + −− + − = + − + ,     (17) 

where the recurrence relations results from the two-layer interface 
'

, 1 1 1 , 1I t I I I I I tw t w t w w+ + − −= + − ,                (18) 

in which the indices , ,i j t  were omitted. 
The transmission coefficients in both directions It  and '

It  are given by 

' 2

1 2

2 2 1
1I I

Zt r
Z Z

ζ
= = = −

+ + ζ
,                        (19) 

1

1 2

2 2 1
1I I

Zt r
Z Z

= = = +
+ + ζ

,                        (20) 

where Ir  is the coefficient of reflection at the interface between two layers, and ζ is the r the 
ratio of acoustic impedances  

1
1Ir
− ζ

=
+ ζ

, 2

1

Z
Z

ζ = .                           (21) 

If n ctε = = ε , coefficients It , '
It  and It  from (13) become 

( )
2

'' 1 1

1 1 1 2 2

2( 2 )
It

λ + µ δ
=
ε ε ρ + ε ρ

, 
2

' 1 2
2 2 2( 2 )

2It
δ ρ +ρ = λ + µ  ε  

, " '2I I It t t= − − .     (22) 

 

2. THE BIDIMENSIONAL CASE 

For bi-dimensional case, the wave propagation equation for isotropic media is given by [2] 

, ,( ) j ji i jj iw w wλ +µ +µ = ρ  ,                    (23) 

and can be written for this two-dimensional case under the form 

,11 ,22 ,12AW BW CW W+ + = ρ  ,                 (24) 

where 

1

2

2 0 0 0
, , ,

0 0 2 0
w

A B C W
w

λ + µ µ λ +µ       
= = = =       µ λ + µ λ +µ       

.      (25) 

With the finite difference method with a spatial mesh grid 1 2N N×  of rectangular cells of size 

1 2ε × ε , and a time discretization with the step δ , for each point of the grid the displacements at 1t +  
in the case of no attenuation are  
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( )

( ) ( )

2
1, , , , 1, , , 1, , 1, , ,2

1

, , 1 , , 1 , , , 1, 1 , 1, 1 , 1, 1 , 1, 12
2 1 2

2 [ 2

2 ].
4

t i j t i j t i j t i j t i j t i j

t i j t i j t i j t i j t i j t i j i i j

AW W W W W W

B CW W W W W W W

+ − + −

+ − + + − − − + + −

= − + δ + − +
ε

+ + − + + − −
ε ε ε

    (26) 

Using the notations from Fig. 1, we get 

  
2 2

2 2
1 2

( 2 ) , 1,2, , 1,2, 3 ,
4k k

k h

k k h kδ λ + µ δ µ λ +µ
α = = β = = = − γ =

ρε ρε ρε ε
,     (27)  

and omitting index writing t , i  and j  we have 

1 1 5 7 1 6 8 1 1 1 2 3 4 1

1 2 6 8 2 5 7 2 2 1 2 3 4 1

( ) ( ) 2( 1) ( ) ,
( ) ( ) 2( 1) ( ) ,

t t

t t

u u u u u u v v v v u
v v v v v v u u u u v

+ −

+ −

= α + +β + − α +β − + γ − + − −
= α + +β + − α +β − + γ − + − −

    (28) 

with 1 2,u w v w= = . 
In isotropic materials we have 2

Pcλ + 2µ = ρ  şi 2
Tcµ = ρ , with Pc  and Tc  are velocities of the 

longitudinal and transverse waves, respectively. We consider a division into time and space that 
respects the condition  

2 21 2
l tv vε ε

= ≥ +
δ δ

.                                 (29) 

 

6 1

7

2

3

5

ε1

8 4

ε2

i x

j+1

y

j

j -1

i -1 i +1
 

Fig.1. Nodes. 
 
The numerical stability analysis of recurrence equations is done by using the Von Nemann 

method which consists in replacing of the discrete displacements in the recurence equations with 
Fourier transform. In the two-dimensional case we have 

( )
, , 0

i mx ny t
i j tw w e g+→ ,                         (30) 

where 1x i= ε , 2y j= ε . Introducând (30) în (28) se obţine  

1
1 3

1
3 2

2 0
0 - D 2

D g g D u
vD g g

−

−

 − − −    
⋅ =     − −      

,             (31) 
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where  

( )
( )

( ) ( ) ( )

2
1

2
2

2 4
3

1 2 ,

1 2 ,

16 1 1 1 ,

D c d abe

D c bd ac

D b ac de d e

= − +

= − +

= − − −

                 (32) 

2

1

2

a
 ε

=  ε 
, 

2

T

L

cb
c

 
=  
 

, 
1

Lc c δ
=

ε
, 2 1sin

2
md ε

= , 2 2sin
2

ne ε
= . 

In order that (31) to admit solutions, the determinant of the system (31) must be null 

( )( )2 2 2
1 2 32 1 2 1 0g D g g D g D g− + − + − = ,           (33) 

or 

( )( )2 2
1 22 1 2 1 0g A g g A g− + − + = ,            (34) 

where  

( )( ) ( ) ( ) ( )2 2 2
1 1 2 1 2 3

1 1 1 1
2

A D D D D D c b d ae c b s= + + − + = − + + + − ,  (35) 

( )( ) ( ) ( ) ( )2 2 2
2 1 2 1 2 3

1 1 1 1
2

A D D D D D c b d ae c b s= + − − + = − + + − − ,  (36) 

with 

 ( ) ( ) ( )2 4 1 1s d ae ade d e= − + − − .         (37) 

The numerical stability testing of equations with finite differences imposes 1g ≤ , from which 

it results 1 1A ≤ and 2 1A ≤ . From (35), the condition 1 1A ≤  becomes 

( ) ( ) ( )2 21 1 1 1 1c b d ae c b s− ≤ − + + + − ≤ ,   (38) 
equivalent to 

( ) ( ) ( )2 20 1 1 2c b d ae c b s≤ + + − − ≤ .     (39) 

From (36), the condition 2 1A ≤  gives 

( ) ( ) ( )2 21 1 1 1 1c b d ae c b s− ≤ − + + − − ≤ .   (40) 

equivalent to 

( ) ( ) ( )2 20 1 1 2c b d ae c b s≤ + + + − ≤ .             (41) 

Because 0 1d≤ ≤ , 0 1e≤ ≤ , 0 1b≤ ≤ , 0 a≤  and 0 c≤ , the right side of (39) and (41) is 
verified. 

The approximation s d a e≥ − ⋅  gives 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 21 1 1 1c b d ae c b s c b d ae c b d ae+ + − − ≤ + + − − − . (42) 

The inequality on the right side of the relationship (41), taking into account (42), becomes 



 Rodica Ioan, Veturia Chiroiu and Dinel Popa  37 

( ) ( ) ( )
2

1 if ,
2

11 1 if ,

d ae
d abec

b d ae b d ae d ae
bd ae

 ≤ +≤ = + + − − −  ≥
 +

         (43) 

In the worst case 1d e= = , (43) becomes 

 2

1 , 1,
1 1 1min ,

11 , 1,

a
abc

ab a b a
b a

 ≤  +≤ =  + +   ≥
 +

             (44) 

From  

2 , 1
2 , 1

d ae ade a
s

d ae de a
+ − ≤

≤  + − ≥
                 (45) 

 we have 

 ( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2

2
2 2

2

2

1

1 2 1
1 1

1

1 2 1

c b d ae

c b d ae ade a
c b d ae c b s

c b d ae

c b d ae de a

 + + +

+ − + − ≤

+ + + − ≤ 
+ + +

 + − + − ≥

       (46) 

Taking into account (46), inequality on the right side of the relationship (41) becomes 

( )( )

( )( )

2

1 , 1,
1 1

1 , 1,
1 1

a
ae d b ae

c
a

ae d b e

 ≤ + − −≤ 
 ≥
 + − −

       (47) 

In the worst case 1d e= = , (47) is identicalyl with (44). 

So, the relationship of stability is 

1
1 2 2

21
2 2

2

1
2 2 2

21
2 2

2

1 if 1,
1

1 if 1,
1

T

L
P

T

L

c
c

c

c
c

ε ε ≤ εε +
ε

δ ≤  εε ≥
 εε+

ε

            (48) 

which reduces, for a uniform meshing, to (29). 
To extend recurrence relations in the interfaces, it is assumed that the properties of the material 

are constant in the cell. We consider the point at the intersection of four mediums with different 
properties , , , , 1,2,3,4k k k kR kρ λ µ =  (Fig. 2). The points kP  have location ( , )i j± η ± η . 
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i -1 i +1
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P3 P4
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Fig. 2. The intersection point of four adjacent media. 

 
 
We impose the condition of continuity of the temporal derivations of the displacements so that 

for 0η→ , to have 
kPW ≈ Ω . This condition is ensured by the continuity of displacements at the 

initial moments. Since within the cell the material is homogeneous, we calculate ,khW , , 1,2k h =   
from (23). Using the finite differences we have 

 
( ) ( ) ( )

1,1 1,2
1 1 1

1 2

5 6 1 5 6
1 1 12 2

1 2 1 2

2 2

2 2

W W
A B

W W W W W W W W
A B C

ρ Ω ≈ − +
ε ε

− − + − − 
+ + + ε ε ε ε 

     (49) 

    
( ) ( ) ( )

2,1 2,2
2 2 2

1 2

7 6 6 7 2
2 2 22 2

1 2 1 2

2 2

2 2

W W
A B

W W W W W W W W
A B C

ρ Ω ≈ − +
ε ε

− − + − − 
+ + + ε ε ε ε 

     (50) 

 
( ) ( ) ( )

3,1 3,2
3 3 3

1 2

7 8 3 7 8
3 3 32 2

1 2 1 2

2 2

2 2

W W
A B

W W W W W W W W
A B C

ρ Ω ≈ + +
ε ε

− − + − − 
+ + + ε ε ε ε 

      (51) 

 
( ) ( ) ( )

1,1 4,2
4 4 4

1 2

5 8 5 8 4
4 4 42 2

1 2 1 2

2 2

2 2

W W
A B

W W W W W W W W
A B C

ρ Ω ≈ − +
ε ε

− − + − − 
+ + + ε ε ε ε 

    (52) 

where W  is the displacement vector in point P,  nW is the displacement vector in points  
1,2,...,8n =  (Fig. 1). kA , kB  and kC  correspond to four media. 



 Rodica Ioan, Veturia Chiroiu and Dinel Popa  39 

T3 T T4

R2 R R1

Q1
Q
Q4

S2
S
S1

12

3

ε1

4

ε2

i x

j+1

y

j

j -1

i -1 i +1

η

η’ η

 
Fig. 3 Representation of points for continuity conditions. 

 
We consider four points Q , R , S  and  T  at the distance η<< ε  from P , and eight points 

4Q , 1Q , 1R , 2R , 2S , 3S , 3T , 4 1 1 2 2 3 3 4, , , , , , ,Q Q R R S S T T  at the distance 'η << η  from Q , 
R , S  andT , respectively (Fig. 3). 

We impose the continuity conditions of tensions in P  

( ) ( )
2 11 1R Rτ = τ , ( ) ( )

3 41 1T T
τ = τ                 (53) 

( ) ( )
3 41 1T T

τ = τ , ( ) ( )
3 22 2S Sτ = τ                 (54) 

The constitutive law for isotropic environments results  

1 ,1 ,2AW DWτ = + ,                        (55) 

2 ,1 ,2EW BWτ = + ,                       (56)       

3. APPLICATIONS 

Consider the one-dimensional wave propagation in a three-dimensional jointed plate shown in 
Fig. 4. [8-12]. The plate occupies the region ],[ bax∈ , ∞<|| y , and ∞<|| z  consisting of a 
nonhomogeneous matrix material subdivided by periodically spaced joints. The joints are parallel, 
planar, periodically spaced surfaces of zero thickness, across which the displacements are allowed 
to be discontinuous. The joints are located at  2nh , hn )1(2 + , hn )2(2 +  and so on, Zn∈ , each 
joint having two faces identified by +  and − . Now let ab −  be small, but large enough that the 
interval ],[ ba  contains many joints. Choose coordinates so that the waves lie in the ),( zx  plane. 
The plate is assumed to be in plane strain and to support waves running in the x -direction. A finite 
duration P  or S  pulse, with wavelength much larger than the cell dimension h2 , propagates 
obliquely through the plate on the face x a= .   
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Fig. 4. Jointed medium. 

 
The motion equations for the displacement field ),,( tzxu  and the stress field ),,( tzxσ  are 

[8, 11] 

  , ρij j iuσ =  , 3,1=i ,                     (57) 

 , ,
1 ( )
2ij i j j iu uε = + , 2ij kk ij ijσ = λε δ + µε  , , 1,2,3i j = ,              (58) 

),2(),2( 1111 tnhtnh +− = σσ , ),2(),2( 1313 tnhtnh +− = σσ ,           (59) 

)],2(),2([),2( 11 tnhutnhuDtnh ijij
−+− −=σ ,              (60) 

 0i iju = σ = ,  , 1,3i j = , ,y z → ±∞  ,                   (61)  

where the comma means differentiation with respect to the variable ix ( xx ≡1 , yx ≡2 , 
zx ≡3 ), the dot differentiation with respect to time and ρ  is the material density, ( )xλ  and ( )xµ  

are the Lame moduli for the matrix, 0011 2µλ +=D , 013 µ=D and 033 λ=D , where 0 0,λ µ are the 
elastic moduli for the joint.  

 

 
                 Fig. 5. Dispersion curves for a) acoustic mode and b) the first optical mode 
 
 
The relations (59) are verified by all the joints. Non-vanishing displacements are 1u  and 2u . 

Conditions (59) and (60) represent stress continuity for the joint nh2  for | |z < ∞ , and joint 
constitutive law for the joint nh2 , respectively. Relation (61) is the radiation condition. 



 Rodica Ioan, Veturia Chiroiu and Dinel Popa  41 

    To test the efficacy of the LISA method we consider first the simple case when 
3 0u = and ( )xλ = λ and ( )xµ = µ . The exact dispersion relation for harmonic-wave propagation is 

obtained by assuming solutions of the form ( , ) ( )exp(i( ))u x t U x kx t= − ω .  
The equations (57)-(61) lead to the dispersion relation calculated in [11] 

 11sin 2 4 sin 2 (1 ) sin 2 (1 )
2P P P P

D hkh kh kh kh
kv kv kv kv

     ω ω ω ω
ε ε = ε + ε −     λ + µ     

,     (62) 

In Fig. 5 we compare the results for the dispersion of the acoustic mode for 
11

2 10
D h
λ + µ

= , and 

in Fig. 5b the results for the dispersion of the lowest optical mode on LISA model with the exact 
solution. Evidently, LISA provides a highly accurate model of dispersion. We mention, also, the 
agreement of LISA results with the results given by using the homogenised model developed in [8, 
11]. Next, we apply LISA to the case of a plane P  wave incident at 15θ =  as it traverses a plate of 
10, 20, 40 and 60 joints. The pulse is gaussian.  

In Fig. 6 this pulse measured in the observer x c= is represented after travelling a number of 
10-55 joints. We observe the progressive broadening of the pulse in perfect agreement with the 
results in [10]. The calculus was performed for 32700kg/mρ = , 30080m/ssv = , 6260m/sPv =  
and for each cell NJ ...2,1=  we  have taken  ( )Jρ = ρ + δ , ( )s sv J v= + δ , ( )P Pv J v= + δwith 
a random [ 20,20]δ∈ − . For joints we have taken 112 10D hλ + µ = , 1310D hµ =  and 3310D hλ = . 

 

 
Fig. 6. P impulse incident at 15θ =   after traveling through 10-55 joints. 

4. CONCLUSIONS 

This paper applies the local interaction simulation approach (LISA) for simulation of wave 
propagation in a layered plate. Delsanto et al. [1, 2] have introduced this method for simulation the 
propagation of ultrasonic wave in layered materials. The layered material is discretized in cells, 
each cell being associated to a layer with different mechanical properties. Each cell is put into a 
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one-to -one correspondence to a processor of a parallel computer. The material properties are 
assigned as initial data to each processor. LISA aims to teach processors how the corresponding 
cells react to the arriving wave and propagate it to the neighbors by using a special interaction 
mechanism. LISA is efficient and flexible, especially in conjunction with parallel processing. The 
method is applied to study the ultrasonic wave propagation in materials of arbitrary complexity and 
to solve some inverse problems of their characterization. 

Received on September 28, 2017 
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