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Abstract In this paper, the Chetaev nonholonomic constraints of the form
( , , ) 0kf t q q =& , 1,2,...,k p= , are treated as initial conditions attached to the Appell 

equations of motion of a dynamical system. The rolling of a uniform disk without 
sliding on a horizontal plane is solving by using the cnoidal method. 
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1. INTRODUCTION 

 
The constraint represents a restriction on positions and velocities of a dynamical system. A 

system of points with fixed distances between points (rigid body), motion of a rolling body with no 
slip condition, are examples of such constraints. The first constraint is a holonomic constraint, while 
in the second example, the no-slip condition is a linear nonholonomic constraint.  

The nonintegrable kinematics constraints, nonreducible to holonomic constrains are called 
nonholonomic constraints. A review on nonholonomic systems is found in [1]. Other works focussing 
on this issue are [2-11]. Nonholonomic systems typically arise when constraints on velocity are 
imposed, such as the constraint that the bodies roll without slipping on a surface. Cars, bicycles, 
unicycles - anything with rolling wheels - are all examples of nonholonomic systems. 

Nonholonomic constrains date back to the time of Euler, Lagrange and d’Alembert. The 
geometry of nonholonomic systems shares its mathematical foundations with geometric control 
theory, control problems and sub-Riemannian geometry. 

A common example of nonholonomic systems refers to a dog pursuing a man - the man is 
walking from the origin O  of the coordinate system Oxy  and moves along the y  -axis with   
velocity c . His dog starts at the same moment from the point 0 0( , )x y , 0 0x ≥ , 0 0y ≠ , and runs so 
its velocity at each moment is the line that binds its instantaneous position and the instantaneous 
position of the man. The problem is to find the trajectory of the dog [7].  

Another example is the problem of Leibnitz (1689), i.e. to find a curve along which a particle 
moves in a homogeneous gravitational field with constant velocity. The solution is the paracentric 
isochrone curve and it was given by Jacob Bernoulli in 1694 [12, 13]. A similar example refers to 
motion of a particle in a homogeneous gravitational field with initial velocity starting from a given 
point and subjected to condition of a constant velocity [14]. A generalization of the last problem 
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leads to the motion of a particle in a homogeneous gravitational field subjected to a nonlinear 
constraint [15]. The rolling disc on a horizontal plane, a homogeneous ball on a rotating surface are 
also example of nonholonomic systems [11,16]. 

 Interesting applications of the nonholonomic systems are the robotic locomotion [17-22] and 
control of undulatory robotic locomotion [23-26] such as undulatory locomotion in the snake-like or 
worm-like motion. In these problems, the constructing of integrators is an open problem [23, 24]. A 
number of recent papers [25-28] is focused on the discrete version of the Lagrange-d’Alembert 
principle.  

In this paper, the systems subjected to p Chetaev nonholonomic constraints are studied. The 
ideal bilateral Chetaev nonholonomic constraints  

 ( , , ) 0kf t q q =& , 1,2,...,k p= ,                      (1)   

are treated as initial conditions attached to the Appell motion equations of the dynamical system [29]. 
In (1), 1 2( , ,..., )nq q q q=  are n  generalized coordinates which define the position of the dynamical 
system. The Appell's equation of motion is described by Paul Emile Appel [30,31] and Josiah 
Willard Gibbs [32]. The Appell’s equations are more convenient in solving the nonholonomic 
systems problems due to the fact that Appell’s formulation is an application of Gauss principle of 
least constraint. The rolling of a uniform disk without sliding on the horizontal surface is solved 
next. 

2. THE ROLLING DISK 

The nonholonomic constraints are introduced in the motion Appell equations by using 
constaints multipliers. The approach is applying to the rocking, rolling with not sliding motion.  

Firstly, we give an example concerning a particle of mass m  which moves in 3D space. The 
Appell equations of motion are written as 

1 12mq q= λ&& & , 

2 22mq q= λ&& & ,                                 (2) 

3 32mq mg q= − − λ&& & , 

where 1 2 3( , , )q q q define the position of the particle. The Chetaev nonholonomic constraint is written 
as 

 2 2 2
1 2 3 0f q q q= + + =& & & ,                           (3)  

From (2) and (3) we obtain 
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mg
q

λ = −
&

.                                (4) 

By substituting (4) in (2) we get 
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3 2
mgmq = −&& . 

By applying the Lie symmetry of the Appell equations (2), some conserved quantities with 
physical meaning are deduced. These conserved quantities can be also found by using Newtonian 
mechanics, or by using the analytical mechanics methods. 

The general form of the Appell equations of motion of a dynamical system are written as 

  k
s k

s s

S fQ
q q
∂ ∂

= + λ
∂ ∂&& &

, 1,2,...,k p= , 1,2,...,s n= ,                   (6) 

where ( , , , )S t q q q& && is the energy of the system, ( , , )sQ t q q& , 1,2,...,s n= ,are the generalized forces, and 

( , , )k t q qλ & , 1,2,...,k p= , are the constraint multipliers. The term k
k

s

f
q
∂

λ
∂ &

 represents the generalized 

constraint forces. Unknowns ( , , )k t q qλ & are determined from (1) and (6). 
The solution of (6) gives the motion of the nonholonomic system with initial conditions given 

by (1).  

 
Fig.1. Rolling disk. 

 
Consider now the problem of rolling disk without sliding on a horizontal plane Oxy [33]. The 

position of the disk is given by the coordinates ( , )x y of the contact point P between the disk and the 
surface, the rotation angleψ between P and an arbitrary point S on the disk in its motion, the angle 
ϕ  between the tangent to the disk at P  and the Ox  axis, and the inclination angleθ  between 
the disk and the surface (Fig. 1). 

This problem is solved in [34] by using the symmetry group 1(2)E S×  and a global gyroscopic 
stabilization principle. (2)E is the Euclidean motion group of the plane, and 1S is the group of 
internal symmetries of the disk. The symmetry simplifies the motion equations of motion.  

The global gyroscopic stabilization principle, i.e. the relative equilibria are stable (elliptic) if 
their energy is larger than a fixed number. For exceeding values of the parameters, the disk falls flat 
for a certain time. A surprising result of this analysis is the existence of a universal constant change 
in the angle of the point of contact. 

In this paper, the motion of the rolling disk is investigated by applying the cnoidal method 
[35]. 
The system of coordinates attached to the uniform disk is displayed in Fig. 2. 

In addition to the 2D coordinates ( , )x z  with axis z  vertically and axis x  horizontally, we 
introduce the unit vectors ( , , )α β γ related to the disk.  

Axisα lies along the symmetry axis of the disk with the sense chosen so that the component 1ω  
of the angular velocity vectorω  of the disk with respect to this axis is positive, axis β  is defined 
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as 1β = γ ×  i.e. β  lies in the direction of the velocity of the point of contact A  (green), and axis
γ is directed from the center of the disk O  to A  with the horizontal surface and makes the angle 
θ , 0 ≤ θ ≤ π  , to that plane. The distance from O  to A  is a .  

The motion of A  is instantaneously in a circle of radius r .  
The horizontal axis is r z= β× . The distance from the axis of this motion to O is b . The 

horizontal axis is r z= β× . 
 

 
 

Fig. 2. System of coordinates. 
 

The ( , , )α β γ components of the equations of motion of the uniform disk are  

 1
3 sin 0
2
ω + θΩ θ =&& ,  

 2
1

1 3 5sin cos sin cos
4 2 4

g
a

Ω θ θ+ ωΩ θ− θ = θ&& ,                  (7) 

 1sin 2 cos 2 0Ω θ+ θΩ θ + ω θ =& && .  

  In this paper, the disk rolls without slipping relates the velocity of O  to the angular velocity 
vector ω  of the disk, i.e. the disk is subjected to the Chetaev nonholonomic constraint. In 
particular, the instantaneous velocity of A  with the horizontal plane is zero, 0O Av v a= +ω× γ = .  

The solutions of (7), { }1( ) , ,s t = θ ω Ω are found as a sum of linear and nonlinear superposition 
of cnoidal vibrations, respectively [35]  

  ( ) ( ) ( )lin int
i i is t s s= η + η , 1,2,3i = ,                    (8) 
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for tη = −ω .  
By applying the cnoidal method, we also can find more conserved quantities with physical 

meaning [36-40]. Ddetails can be found in [41-43]. 

3. RESULTS 

Our results show that the rolling is stable only if  

 2
1 3

g
a

ω >  .                               (11) 

When the angular velocity about the vertical is 4g
a

Ω >  and 1 0b
a
Ω

ω = ≠ , the rotating disk 

is rising, that is, the plane of the disc may rise first towards the vertical, and then falling towards the 
horizontal. Fig.3 shows few snapshots of the trajectories of O nearly the disk falls flat. The 
trajectory of A  before the disk falls are shown in Fig. 4. The results of Figs. 3 and 4 are analogous 
and correspond to those of Cushman [34] using the symmetry group 1(2)E S× and a global 
gyroscopic stabilization principle. The phase portraits ( , )θ θ& , ( , )Ω Ω& and 1 1( , )ω ω& nearly the disk 
falls flat are displayed in Fig.5. 

 
Fig. 3. Snapshots of the trajectories of O nearly the disk falls flat. 
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Fig. 4. Snapshots of the trajectories of A nearly the disk falls flat. 

 

 
 

Fig. 5. Phase portraits ( , )θ θ& , ( , )Ω Ω& and 1 1( , )ω ω& nearly the disk falls flat. 
 

The tendency to chaos is describes by attractors. An attractor is a set of numerical values 
toward which a dynamical system tends to evolve, for a wide variety of initial conditions. The 
Chetaev nonholonomic constraints are treated in this paper as initial conditions. These initial 
conditions depend on the motion of the system, according to (1) and (3). So, the rolling disk is 
strongly sensible to Chetaev nonholonomic constraints attached to the motion equations as initial 
conditions. 
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The attractors 1( , , )θ θ ω& , 1( , , )Ω Ω ω& , ( , , )θ θ Ω& and 1 1( , , )ω ω θ& are plotted in Figs. 6-9, 

respectively.  
 

 
Fig. 6. The attractors 1( , , )θ θ ω& . 

 
Fig. 7. The attractor 1( , , )Ω Ω ω& . 

 
Fig. 8. The attractor ( , , )θ θ Ω& . 
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Fig. 9. The attractor 1 1( , , )ω ω θ& . 

4. CONCLUSIONS 

In this paper, the rolling disk without sliding on a horizontal plane is investigated. The 
Chetaev nonholonomic constraints attached to the disk are treated as initial conditions. The Appell 
equations of motion of the disk are studied with respect to these initial conditions in order to capture 
the tendency to chaos of the disk. The solutions are found by using the cnoidal method. 

When the angular velocity about the vertical is 4g
a

Ω >  and 1 0b
a
Ω

ω = ≠ , the rotating disk is 

rising, and the plane of the disc may rise first towards the vertical, and then falling towards the 
horizontal. Trajectories of O and A , respectively, are plotted nearly the disk falls flat, and also, the 
attractors are investigated.  

The results of this paper have much significance in perfecting the cnoidal method to investigate 
the chaos behavior of dynamical systems. 
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