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Abstract Ernest Duporcq proposed in 1898 a theorem having as object the rigid-body 
motions with spherical trajectories. The theorem says that if five points situated on a 
moving plane P  move on five fixed spheres with centers on a fixed plane P′ , then 
there exists on P  a sixth point which also describes such a sphere. More clearly, given 
five points in P  and five points in P′ , then there exists anadditional pair of points which 
also describes a sphere. The original scientific contribution of this paper consists in a 
generalized version of this theorem: Given five points on a moving plane P and five 
points in a fixed plane P′ , that are moving on the super-ellipsoidal trajectories  
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then there exists an additional pair of points which describe such a super-ellipsoidal 
trajectory. According to this version, the trajectories of a moving body defined by 
six distance or/and angular constraints between six pairs of points, lines and/or 
planes, are identified by intersections of two super-ellipsoids. These motions are of 
interest for simulation, control and performance design of Stewart-Gough platforms 
in order to prevent their destruction due to the chaotic behavior. The dynamics of 
such platforms can be extremely complicated due to the riddling bifurcation and the 
appearance of the hyperchaotic attractors.  

Key words:  Duporcq’s theorem, super-ellipsoidal trajectories, Stewart-Gough platforms, 
riddling bifurcation, hyperchaotic attractors. 

1. INTRODUCTION 

Duporcq theorem (1898) says that if five points situated of a moving plane P  move on 
five fixed spheres with centers on a fixed plane P′  , then there exists a point on P   which 
describes a sphere [1]. As an interesting detail, the French Academy of Science has launched in 
1904 the Prix Vaillant competition with the theme of searching all displacements of a rigid body for 
which distinct points move on a spherical trajectory [2]. Borel [3] and Bricard [4] received the prize 
and the Borel-Bricard problem becomes important in recent years due to the Stewart–Gough 
platforms applications [5-13].  

The Navwratil version of Duporcq’s theorem (2014) is [14]: “If five pairs of attachment points 
( , ) ( , )i i j jb a b a≠ , j i≠  , , {1,2,...,5}i j∈  of a planar manipulator are given, then there exists  a sixth 
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point pair 6 6( , ) ( , )k kb a b a≠  , 1,2,...,5k =  , such that the resulting planar architecturally singular 
manipulator has the same solution for the direct kinematics as the first one, where the pair ( , )l lb a , 

1,2,...,6l =  , verifies the  conditions: a) sphere condition, if lb   and la   are finite; b) Darboux 
condition, if lb  is finite and la  is an ideal point; c) Mannheim condition, if lb  is an ideal point 
and la  is finite; d) angle condition, if lb  and la  are ideal points”. 

A sphere of center A  which passes through B  is defined as a set of points having the same 
distance from A  to B . The sphere condition is verified if lB  and lA  are finite. The sphere 
condition transforms in the Darboux condition when the center A  tends to ∞  and B  is finite. In 
this case, the point B  is located in a fixed plane orthogonal to the direction of the ideal point A . 
The Darboux condition is verified if lB  is finite and lA  is an ideal point. By changing the role of 
the fixed and moving platforms, the sphere condition transforms in the Mannheim condition. This 
condition is verified if lB  is an ideal point and lA  is finite. This means that a plane of the moving 
orthogonal system to the direction of the ideal point B  slides through A . The Mannheim motion is 
the inverse of the Darboux motion. If A   is an ideal point, the finite point B  can be reflected on 
all finite planes through A . The resulting points form a plane through B  orthogonal to A , and the 
Darboux condition is verified. The inverse Darboux conditions yields to the Mannheim condition. 
The ideal points have the property that each point encloses the same angle φ with the ideal point A , 
and the point B  can be reflected on all finite planes through A . This condition is known as the angle 
condition. 

The new version of the Duporcq’s theorem considers that the spatial motions of a moving body 
have the super-ellipsoidal trajectories in the 3D Euclidean space. In this way, a large number of 
motions of a Stewart-Gough platform is identified, including the known ones, by intersections of two 
super-ellipsoids.  

The Stewart-Gough platforms are mechanisms composed of two rigid objects, a base and a 
platform, connected by six legs through spherical joints. A class of these platforms is architecturally 
singular being characterized by motions determined only by its geometry [15-24]. 

This article is focused on the self-motions of a class of the architectural singular Stewart-Gough 
platforms, i.e. the Segre-dependent Stewart-Gough platforms in which each leg has a linear condition 
under the Segre embedding related to the Euclidean group SE(3) consisting of rotations and 
translations in 3R [25]. The dynamics of these platforms can include the riddling bifurcation, i.e. the 
bifurcation in which one of the unstable trajectory embedded in a higher-dimensional chaotic attractor 
becomes unstable transversely to the attractor [26-28]. When a trajectory leaves an attractor, it can be 
attracted by another attractor and therefore, the riddling phenomenon appears, and then automatically 
the generation of the hyperchaotic attractors [29-35]. 

The paper is organized as follows: Section 2 is devoted to new version of the Duporcq’s theorem. 
In Section 3, the trajectories of distinct points of the body are determined by intersecting of two super-
ellipsoids. The road to chaos of a class of the architectural singular Stewart-Gough platforms, is 
presented in Section 4. The conclusions are drawn in Section 5. 

2.  A NEW VERSION OF THE DUPORCQ’S THEOREM 

Let us to present a generalized version of the Duporcq's theorem: 
If five pairs of attachment points ( , ) ( , )i i j jb a b a≠ , j i≠  , , 1,2,...,5i j =  of a planar 

manipulator are moving of super-ellipsoidal trajectories, 1 0ia F∈ ≥  and 2 0ib F∈ ≥ , 1,2,...,5i =  , 
where F  is defined as  
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then there exists a sixth point pair 6 6( , ) ( , )k kb a b a≠ , 1,2,...,5k = , in a way that the resulting planar 
architecturally singular platform has the same solution for the direct kinematics as the given one, and 
the sixth point pair 6 6( , )b a  fulfills the same condition of super-ellipsoidal. This condition refers to 
that all attachments points move on two super-ellipsoids. 

 
The proof of this theorem is easily done by intersecting two super-ellipsoids 1 0F ≥  and 2 0F ≥ . 

By these intersections, the trajectories of distinct points of the body are obtained. The constants ir , 
1,2,3i = , and iε , 1,2i = , are determined from the condition that displacements of both platforms 

move on two super-ellipsoids. In addition, if five pairs of attachment points ( , ) ( , )i i j jb a b a≠ , j i≠  , 
, {1,2,...,5}i j∈  of a planar platform are given, then there exists a sixth point pair 6 6( , ) ( , )k kb a b a≠ , 

1,2,...,5k =  , in a way that the resulting planar architecturally singular manipulator has the same 
solution for the direct kinematics. Instead, additional conditions of the Darboux, Mannheim or angle 
are not necessary to be verified because they are immediately met for finite and ideal points. 

The ( , , )x = r zθ  represents the spatial cylindrical (Eulerian) coordinates, centred in O  , and 
1 cosx r= θ  , 2 sinx r= θ  , 3x z=  . The 3x  -axis corresponds to the z  -axis of inertia of the super 

ellipsoid model. A point x   with ( ) 0F x <   is inside the super-ellipsoid and every point x   with 
( ) 0F x =   lies on its surface. The radius ir   , 1,2,3i =  , gives the size of the super-ellipsoid. The 

exponents 1 2, (0,2)ε ε ∈  correspond to a convex body and iε  → 0 yields a cuboid and iε  → 2 an 
octahedron. The distance between P   and P′  belonging to S   must be minimized 

1 2 1 2
1min ( ) ( )
2
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,                            (2) 

where 1x  and 2x  are the position vectors of the points, respectively.  
The task is to determine the unknowns ir  and iε , 1,2i = , so that all points of a rigid body 

move on super-ellipsoidal trajectories. Conform to this statement, the sixth point pair can change with 
respect to different values for the lengths of the first five legs.  

The super-ellipsoid can be written in terms as  
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We rewrite (1) under the form  
2 ( ) 0F x− ≥ .                              (4) 

By intersection of two super-ellipsoids 1 0F ≥  and 2 0F ≥ , we obtain   

 2 2
int 1 2( ) ( ) 0F F F= − ∧ − ≥ ,                            (5) 

where ∧  is the intersection operator defined as  

2 2
1 2 1 2 1 2f f f f f f∧ = + − +  .                      (6)   

Summing up, the super-ellipsoids are topologically equivalent to spheres. The spheres can be 
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considered as ellipsoids with axes 1 2 3, ,r r r   whose curvature in the ( , , )x y z  direction is distorted by 
the influence of the exponents 1ε  and 2ε  . The exponents 1ε  and 2ε possess a great flexibility for 
obtaining new object with interesting shape.  

 

3. INTERSECTION DETECTION ALGORITHM 

The intersection detection algorithm has to find if two points 1 1P F∈   and 2 2P F∈   are in 
contact.  The distance of penetration 2 1d P P= −  and the contact direction c  verify 2

1n c= µ  and 
2

2n c= −ν  , 0d c× =   where 1n   and 2n   are the outward surface normal at 1P   and 2P  , and ,µ ν  
are arbitrary real numbers. 

A scheme of trajectories is shown in Fig. 1, where the bottom platform consists of six legs 
located at ia   , 1,2,...,6i =  . The corresponding moving platform has the attachments ib   ,  

1,2,...,6i =  .  The theorem identifies many manipulators. In contrast to known Stewart-Gough 
platforms which six constraints in distances between points, the theorem permits to find Stewart-
Gough platforms with six distance or/and angular constraints between six pairs of points, lines, and/or 
planes in the base and platform, respectively.  

 
Fig. 1.  Scheme of trajectories obtained by the intersections of two super-ellipsoids. 

 
The sets of points, planes, and lines in 3D Euclidean space are subjected to geometric constraints: 

the distance constraints between point/point, point/line, point/plane, line/line, and the angular 
constraints between line/line, line/plane, and plane/plane. Therefore, to determine the manipulator 
position and orientation, six geometric constraints are needed. 

The platforms include four types of constraints: (1) three distances and three angular constraints, 
(2) four distances and two angular constraints and (3) five distances and one angular constraints and 
(4) six distance constraints. In this context, the literature reports 1120 motions of the first type, 1260 
of the second type, 1008 of the third type, and 462 of the last type [14].   

The resulting planar architecturally singular Stewart-Gough platforms has the same solution for 
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the direct kinematics as the given one, where the pair ( , )l lb a , 1,2,...,6l = , verify the super-ellipsoid 
condition. 

 
Fig. 2. Sectional curves obtained by intersection of two super-ellipsoids with plane-body component. 

 
The motion is as follows: if P′  moves parallelly to P , so that one of its points traces out a 

fixed line perpendicular to P , and another point is on a fixed super-ellipsoid with center on the same 
plane, then all the points of the space attached to P′  move on super-ellipsoidal  curves.  Some 
sketches during the motion of a singular Stewart-Gough platform with plane-body component are 
displayed in Fig.3. 
 

 
 



20                                     A generalized version of Duporcq’s equation  

 
 

Fig. 3.  Sketches of motion of a singular Stewart-Gough platform with plane-body component. 
 

In contrast to the known Stewart-Gough platforms which have only six constraints in distances 
between points, the theorem permits determining the Stewart-Gough platforms with six distance 
or/and angular constraints between six pairs of points, lines, and/or planes in the base and platform, 
respectively. 

By intersection of two super-ellipsoids different sectional curves , 1,2,...,6iC i = , are obtained. 
Six curves are illustrated in Fig. 2 for 1 2 3 / 2r r r= = ,  and 0.3iε = , for a plane-body component. 

4. ROAD TO CHAOS OF THE SEGRE-DEPENDENT STEWART-GOUGH PLATFORMS 

We consider the class Segre-dependent Stewart-Gough platforms of the architectural singular 
Stewart-Gough platforms, in which each leg has a linear condition under the Segre embedding related 
to the Euclidean group SE(3) consisting of rotations and translations in 3R   [36]. The distance 
constraint of each leg corresponds to the intersection of SE(3) with a hyperplane. Consider the case 
when the platform moves along one of the sectional curves , 1,2,...,6iC i = , obtained by intersection 
of two super-ellipsoids, keeping the same relative rotation with respect to base (Fig.4).  

Sectional curves are correlated with each other by a reciprocally interaction. This dynamic 
interaction leads to the chaos behavior if one of the curve, let’s say 0C , is perturbed. To investigate 
the behavior of the Euclidean distance in the phase space ,( , )i iC C τ  between a perturbed curve and 
another curve iC  , we consider 

 
6 6

0 1 2 0 1 2 2

1 1

( ) ( ) ( )i i i i
i i

D x x x x
= =

′ ′τ = − + − τ∑ ∑ ,                            (7) 

where τ  is the time, the superscript 0 indicates the non-perturbed curve and 1 the perturbed one, 
respectively. 
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Fig.4. A Stewart-Gough platform with motion along a curve , 1,2,...,6iC C i∈ = . 

 

 
Fig. 5. Time dependence of 0ln( ( ) /D Dτ  for 0 1C C=  and 0 2C C= , respectively. 

 
The initial perturbation applied to the curve 0C  is 3

0 2 10D −= × . ( )D τ  is a linear function at 
short intervals of time, but for long intervals of times, the function shows an exponential increasing.  
This behavior of ( )D τ  is characteristic to the chaotic motion at short intervals of time and can be 
characterized by the Lyapunov exponent λ    

0 0 0exp( ) lim ( ) /d D D
→

λτ = ∆τ .                          (8) 

The time variation of 0ln( ( ) / )D Dτ  for the body is presented in Fig. 5. The red lines are the 
interpolated lines used to calculate the Lyapunov exponent [36]. The time variation of 0ln( ( ) / )D Dτ  
may define the thresholds between regular and chaotic motions with respect to 0C  .   
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Fig. 6. Bifurcation diagrams of 2x  as a function of 0D  . 

 
Fig. 7. Riddling bifurcations of the unstable periodic orbits with respect to 2x  and 3x . 

 
Numerical results shown that the initial perturbation 0D   applied to a curve 0C    affects 

stability of the  periodic orbits. The orbits become unstable in the least two directions in the vecinity 
of a transition point. Fig. 6 plots the bifurcation diagrams showing the asymptotic values of 2x  
versus the initial perturbation 0D   applied to 0 1C C=  . The orbits 2 3( , )x x   exhibit the riddling 
bifurcation expressd as tongues anchored at these orbits, as shown in Fig.7 [39]. The transition 
between the chaos and hyperchaos is done by an infinite number of tongues that appear 
simultaneously in the least two directions in the vecinity of a transition point. The bifurcation of an 
unstable periodic orbit is characteristic for the chaos-hyperchaos transition. 

The Poincaré cross-section is determined by normal vector chosen along the curve 0C . The 
period of solutions is determined by using the symbolic dynamics of the map in the spirit of [34-36]. 
Fig.8a shows the 2D projection of the Poincare map into the plane 2 3( , )x x of the chaotic attractor 
with two-bundle, for 0 1C C=   and one positive Lyapunov exponent 1λ =  0.42. For 0 2C C=  , the 
Lyapunov exponent is  1λ = 0.62 and the 2D projection of the Poincare map into the plane 2 3( , )x x
of the chaotic attractor with two-bundle is shown in Fig.8b.  
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Fig. 8. 2D projection of the Poincare map into the plane 2 3( , )x x of the attractor a) chaotic for 0 1C C= ; b) 

chaotic for 0 2C C= ; c) hyperchaotic for 0 1C C=  and 0 2C C= ; and d) hyperchaotic for 0 1C C= , 

0 2C C=  and 0 3C C= . 
 

If two curves, let’s say 0 1C C=   and 0 2C C=   are perturbed, two Lyapunov exponents 1λ =
0.41 and 2λ = 0.33 are obtained, and the resulting attractor is a hyperchaotic one, as shown in Fig. 
6c. Fig. 8d shows a hyperchaotic attractor when three curves 0 1C C=  , 0 2C C=   and 0 3C C=   are 
perturbed and three Lyapunov exponents 1λ = 0.75 , 2λ = 0.63  and 3λ =  0.44 are obtained, The 
transition to hyperchaos is characterized by an infinite number of unstable periodic orbits which 
becomes unstable in the least two directions in the vecinity of a transition point. The bifurcation of 
an unstable periodic orbit is characteristic for the chaos-hyperchaos transition. 

The initial basin of attraction is growing after the riddling bifurcations. This means the orbits 
expand in directions 2x  and 3x . The enlargement aspect of the attractors shown in Fig. 9 for a)

0 1C C=  and b) 0 2C C= , respectively. The chaotic behavior leads finally to the destruction of the 
platform, as shown in Fig.10, by the detachment of the legs. 
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Fig. 9. The growing of the chaotic attractor for a) 0 1C C=  and b)  0 2C C= , respectively. 

 
Fig. 10. Types of broking of the platform for a) 0 1C C=  and b)  0 2C C= , respectively. 

5. CONCLUSIONS 

The numerical simulations of the spatial motions described in this paper have the property that 
all points of the moving body have super-ellipsoidal trajectories. The key features of such motions  
result from the new version of the Duporcq’s theorem by the intersection of two super-ellipsoids in 
the 3D Euclidean space.  The theorem states that if five pairs of attachment points ( , ) ( , )i i j jb a b a≠ , 
j i≠   , , 1,2,...,5i j =  ,  of a planar manipulator are moving of super-ellipsoidal trajectories, then 

there exists a sixth point pair 6 6( , ) ( , )k kb a b a≠ , 1,2,...,5k = , such that the resulting planar singular 
platform has the same solution for the direct kinematics as the first one, and the sixth point pair 

6 6( , )b a  moves on the super-ellipsoid. This theorem identifies a larger number of configurations of 
the architecturally singular platforms then the original theorem. In contrast to the known Stewart-
Gough platforms which have only six constraints in distances between points, the theorem permits 
determining the Stewart-Gough platforms with six distance or/and angular constraints between six 
pairs of points, lines, and/or planes in the base and platform, respectively. These results are of interest 
for control, on-line simulation and performance analysis of the Stewart-Gough platforms, especially 
due to their chaotic behavior that lead to their destruction. 



 V.Chiroiu, C.Brisan and L.Munteanu 25 

The transition between the chaos and hyperchaos is a feature of such platforms, in whose 
behavior it was observed an infinite number of unstable periodic orbits which becomes unstable in 
the least two directions in the vecinity of a transition point. These orbits undergo the instability with 
respect to all directions, exhibiting the riddling bifurcation which explains the appearance of the 
hyperchaoticity. The great number of tongues anchored at these orbits and the riddling bifurcation 
have the effect of the growing of the attractor, i.e. the orbits stretch in all directions and the chaotic 
attractor grows becoming a hyperchaotic attractor. As expected, the chaotic behavior leads finally to 
the destruction of the platform by the detachment of the legs. 
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