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Abstract The paper aims to present a summary of the results obtained in the field of 
multicorp systems with elastic elements. The first works in the field appeared in the 70's 
and until now numerous works have been published that contribute to the topic studied. The 
big problem of the obtained results is the difficulty of numerical approach to such a 
problem. If, from a theoretical point of view, it can be said that the results obtained so far 
are satisfactory, when the concrete numerical calculation is made, the results are more than 
disappointing. Finding effective ways to integrate and get the answer in time has remained 
a challenge for researchers. 
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1. INTRODUCTION 

Over the past fifty years, the high speeds of the various machine components and the great 
forces with which the various mechanisms operate make the elements' elasticity significantly 
influence their operation. Resonance phenomena and loss of stability are classical forms of 
manifestation of elastic properties. At the design stage it is necessary to anticipate and remove these 
unfavorable effects. As a result, a study of these phenomena is required. The first papers in the field 
of these systems were made on mathematical models using theories of elasticity theory. 
Unfortunately, the differential equations obtained and describing the evolution in time of the system 
are difficult to solve, even if standard numerical methods of solving are used. The finite element 
method has proven to be the most powerful way to solve this problem. The advantages of this 
method have been presented in a series of papers as [1], [3], [5]- [9], [11], [15], [24], [34]-[36]. 

The first paperss in the field studied the systems in which we have an elastic element with a 
plane motion and were then developed for a more comple mechanisms systems with plane motion 
[5], [9], [18], [19], [22], [27], [39], with the deformable elements.  In the paper [10], [13], [20], the 
results are being synthetized. Particular effects are studied using more complex model [12], [23], 
[45], [46]. 

The research carried out in this field approached aspects regarding the calculation, experimental 
checks and control in case of simple mechanical systems ([8], [17], [24],). The influence of 
damping, the stability or the use of some composite materials [22], [27], [45], [46] or thermal 
problems (see [12]) has been studied. The main difficulty consisted in the symbolic representation 
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of the equations of motions and in finding methods of integration. Such models for two- and three-
dimensional motions have been developed by [34]. Experimental studies validated the chosen 
model [32]. The development of the field has also resulted in theoretical results in the field of 
mechanics of multicorp systems and the elimination of liaison forces in motion equations [4], [14], 
[16], [20], [21], [25], [26], [29]-[31], [33], [37], [38]. A systematic presentation of the results was 
done in [41]-[43]. 

If the obtained motion equations are compared to those obtained in case of the study of the 
steady state response one can find that additional terms occur.  They are due to the relative motion 
of nodal coordinates relative to the mobile coordinate systems attached to the moving bodies - 
Coriolis effects – and to the change of stiffness determined by the accelerations field. The inertia 
terms will be also modified if one takes into account the inertia effects due to the motion of the 
finite element relative to the coordinate system attached to the moving bodies.  

The determination of the equations of motion represents the first step in solving this kind of 
problems. The next step is to relate the equations of motion to the global coordinate system and to 
assemble them for obtaining the set of differential equations which will describe the evolution in 
time of the mechanical system with elastic elements in terms of independent nodal coordinates. 

2. FINITE ELEMENT ANALYSIS OF A MULTIBODY SYSTEM WITH FLEXIBLE 
ELEMENTS 

The change from the local coordinate system to the global coordinate system is 
accomplished through the rotation matrix. The relationships between the components of a vector 
expressed in the two coordinate systems are 

                                               1i ij jx r x=  ,    , 1,2,3.i j =                                          (1) 

The components of the rotation matrix  ijr   define the components of the unit vectors of the 

local coordinate system Oxyz  refer to the global coordinate system 1 1 1Ox y z .  The derivatives of 
these values allow us to get the angular velocities and angular accelerations. In our paper we shall 
express these derivatives according to [44]. The orthogonality conditions of the unit vectors lead to  

                                                               ij kj jk ji ijr r r r= = δ ,                                                        (2) 

where ijδ  is the Kronecker delta. If we differentiate this equation it will results 

   0, , 1,2,3ij kj ij kjr r r r i k+ = =  ,                                          (3) 

 
with the notations   

                                                                      ik ij kjr rΩ =  ,                                                              (4) 

 
rel. (3) becomes 

                                                                  0ik kiΩ +Ω = .                                                          (5) 

 



 Finite element analysis of flexible multibody systems 50 

The skew-symmetric tensor ikΩ  is the so-called operator angular velocity (its components are 
expressed in the global coordinate system). To this operator corresponds the angular velocity vector 
defined by 

                                  1 32 23 2 13 31 3 21 12, , .Ω = Ω = −Ω Ω = Ω = −Ω Ω = Ω = −Ω               (6) 

 We shall also have the angular acceleration skew symmetric operator, defined a: 

                                                     ik k ij kj ij kjr r r rΕ = Ω = +

    .                                           (7) 

To this corresponds the angular acceleration vector defined by 

                          32 23 2 13 31 3 21 12, ,Ε = Ε = −Ε Ε = Ε = −Ε Ε = Ε = −Ε .                   (8) 

After some elementary calculations we shall have 

                      ik ik ij kj ij kj ij kj ij jl ml km ij kj il lkr r r r r r r r r r r rΕ = Ω = + = + = −Ω Ω       ,                         (9) 

from where 

                                                    ij kj ik il lkr r = Ε +Ω Ω  .                                                            (10) 

It is possible to express the angular velocity and acceleration vectors in the local coordinate 
system using the relations 

                                     , , 1,2,3i ij j i ij jr r iω = Ω ε = Ε = .                                              (11) 
The angular velocity and the angular acceleration operator can be written as 

 
                                , , 1,2,3ij ki km mj ij ki km mjr r r r iω = Ω ε = Ε = .                                   (12) 

 
Let us now consider one finite element of a solid elastic body. This finite element will 

participate in the general motion of the solid. A method to determine the motion equations of this 
finite element is to use the Lagrange equations. To apply this method, a first step is to calculate the 
Lagrangian for this finite element. So it is necessary to determine the kinetic energy, the internal 
energy and the external work of the concentrated and distributed forces. We assume that the rigid 
motion of the solid is known and is not influenced by the elastic deformation of the elements. It 
results that the velocities and accelerations field for the solid are known. 

Consider an arbitrary finite element that is refer to a local reference system Oxyz , 
participating to the general three-dimensional rigid motion of finite element finite (Fig.1). The field 
of velocities and the accelerations for the system is considered being known (that means that the 
velocity and the acceleration of the origin of the local coordinate system are known). The angular 
velocity and the angular acceleration of the local coordinate system is too considered as being 
known.   

The displacement δ  (u,v,w) of an arbitrary point ( , , )M x y z  can be written, using the shape 
functions ijN  and the vector δ e of the nodal displacements, in the local coordinate system 

                                              1 1 , 2 2 , 3 3 ,, , , 1,j e j j e j j e ju N v N w N j p= δ = δ = δ = δ = δ = δ = ,         (13) 

or 
                                                , , 1,2,3, 1,i ij e jN i j p= δ = =δ  .                                                  (14)         
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where p is the number of DOF (degrees of freedom) of the element. 
The kinetic energy of an element, due to the translation is  

0

1 ' '
2

L

ct k kE X X dV= ρ =∫     

            ( ) ( )1 1 , , 1 1 , ,
0

1 d
2

L

ko k ki ij eL j ki ij eL j ko k ki ij eL j ki ij eL jX r x r N r N X r x r N r N V= ρ + + δ + δ + + δ + δ∫  
 

    .             (15) 

The total internal energy can be determined with the relation 

, , ,
1
2p e i e ij e jE k= δ δ .                            (16)              

The concentrated loads, with the local components ,e iq , applied in the nodes, cause an 
external work 

   , ,
c

e i e iW = q δ .                                         (17) 

The external work of the distributed loads is 

      ( )1 1 2 2 3 1 2 3
0

d
L

dW p p p m m m x= δ + δ + δ + α + β + γ =∫             

                    *
, ( 3), , , ,

0 0

, 1,2,3, 1,
L L

i ij e j i i j e j e j e jp N dx m N dx q i j p+

   
= δ + δ = δ = =   
   
∫ ∫  ,                    (18) 

where is used the notation  

                         *
, , ( 3), ,

0 0

, 1,2,3, 1,
L L

e j i ij e j i i j e jq p N dx m N dx i j p+

   
= δ + δ = =   
   
∫ ∫ .                        (19) 

The Lagrangian of the element is [14], [15], [25], [26], [29] - [32] 

            d c
c pL E E W W= − + + .                                       (20) 

The Lagrange’s equations are 

     
,,

0
e ie i

d L L
dt

∂ ∂
− =
∂δ∂δ

.                                           (21)  

3. ONE DIMENSIONAL FINITE ELEMENT 

 Let us consider a finite one-dimensional truss element. (Fig.1). To obtain the motion 
equations using Lagrange’s equations, the first step is to write the Lagrangian for the element. 
(which is able to have traction-compression, torsion and bending). To do this it shall be computed 
the kinetic energy of the considered finite element, the internal energy and the external work of the 
distributed and concentrated loads.  
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Fig. 1. One-dimensional finite element. 

 
Consider now a truss finite element, having at ends the nodes numbered i and j.  The finite 

element is referring to a local reference system Oxyz  , participating to the general three-
dimensional rigid motion of the truss (Fig.1). It is considered that the velocity and the acceleration 
of the origin of the local coordinate reference and the angular velocity and the angular acceleration 
of the local coordinate system is considered as being known.   

In the following we will follow the demonstration presented in the paper [43]. The 
displacement δ (u,v,w) of an arbitrary point M chosen at a distance x from the left end of the bar  
can be written, using the shape functions ijN  and the vector of the nodal displacements, in the local 

coordinate system 

1 1 , 2 2 , 3 ,; , , 1,12j e j j e j j e ju N v N w N j= δ = δ = δ = δ = δ = δ =  ,       (22) 

or: 

                                                , , 1,2,3, 1,12i ij e jN i j= δ = =δ  .                                                (23) 

where the nodal displacements vector of the finite element numbered e , eδ , is  

                (1) (1) (1) (1) (1) (1) (2) (2) (2) (2) (2) (2)
1 2 3 1 2 3

T
e L L L L L L δ = δ δ δ α β γ δ δ δ α β γ  .                 (24) 

The entries of this vector are 
- (1) (1) (1)

1 1 2 1 3 1, ,u v wδ = δ = δ = ,  the displacement of the left end of the truss along the three 
directions; 
- (2) (2) (2)

1 2 2 2 3 3, ,u v wδ = δ = δ =  , the displacement of the right end of the truss along the three 
directions; 
- (1) (1) (1)

1 1 1, ,α = α β = β γ = γ  , the rotations of the left end section around the three axes; 
- (2) (2) (2)

1 2 2, ,α = α β = β γ = γ  , the rotations of the right end section around the three axes. 
                                              

The lines of the shape functions matrix N  correspond to the displacements u, v and w and are 
named ( ) (1)uN N= , ( ) ( )2vN N=  and ( ) ( )3wN N=  
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                                       N  
( )

( )

( )

( )

( )

( )

1

2

3

, 1,2,3, 1, 12
u

ijv

w

N N

N N N i j

N N

   
   

 = = = = =     
   
      

 .       (23) 

 
For the rotation α  is adopted the relation  

                                                        4 4 , 1,12i e iN iα = δ = δ = .                                      (24) 

usually the same shape function as for the axial deformation. The rotations of the transversal section 
are used the equations well known from the continuous mechanics [23]  

             5
d
d
w
x

β = δ = −     and     6
d
d
v
x

γ = δ =  .                              (25) 

and can be expressed as follows 

          ( ) '
3 , 3 , 5 ,i e i i e i i e i

d
dx

β = − = − =N δ N δ N δ ,    ( ) '
2 , 2 , 6 ,i e i i e i i e i

d
dx

γ = = =N δ N δ N δ  ,                   (26) 

                                                             , 4,5,6i ij e jN i= δ =δ  .                                                     (27)    

After deformation of the element the displacement of the point 1 2 3( , , )M x x x  becomes  

1 2 3( , , )M x x x′ ′ ′ ′     

    1 1 1 1'x x u x= + = + δ ,  2 2'x v= = δ ,  3 3'x w= = δ  ,                          (28) 

or, with respect to the global coordinate system 

1 1 1 1 11 1 1 1 11 1 1 ,' i i o i i o i ij e jX X r X r x r X r x r N= + δ = + + δ = + + δ , 

2 2 2 2 21 1 2 2 21 1 2 ,' ,i i o i i o i ij e jX X r X r x r X r x r N= + δ = + + δ = + + δ

3 3 3 3 31 1 3 3 31 1 3 ,' i i o i i o i ij e jX X r X r x r X r x r N= + δ = + + δ = + + δ , 

                                                              1,2,3, 1, 12i j= =  ,                                 (29) 

or 

                                         1 1 ,' , 1,3k ko k ki ij eL jX X x N k= + α + α δ = ,                                       (30) 

The velocity is 

                                    1 1 , ,' , 1,3k ko k ki ij eL j ki ij eL jX X r x r N r N k= + + δ + δ =
 

  .                        (31) 

The kinetic energy due to the translation is  

1
0

1 ' '
2

L

ct k kE AX X dx= ρ =∫     

     ( ) ( )1 1 , , 1 1 , , 1
0

1
2

L

ko k ki ij eL j ki ij eL j ko k ki ij eL j ki ij eL jA X r x r N r N X r x r N r N dx= ρ + + δ + δ + + δ + δ∫  
 

                 (32) 
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The kinetic energy of the element dm, due to the rotation is  

                                                  
0

1 ' ' d
2

L

cr i ij jE x= ρ∫ ω I ω .                                                   (33) 

The  infinitesimal element dm has the angular velocity { }Lω'  with the components 

                      1 1 2 2 3 3, ,= ω + α = ω +β = ω + γω' ω' ω'

  ,                              (34) 

or, taking into account the shape functions (22)  

                           3, ,'i i i j e jN +ω = ω + δ  .                                                     (35) 

From the rel.(24) and (26) we obtain: 

     4 ,i e iNα = δ ,  5 , ,i e iβ = N δ   6 , .i e iγ = N δ                                            (36) 

The values 1ω , 2ω , 3ω   represent components of the angular velocity vector related  to the 
local (mobile) coordinate system. 
 The inertia matrix is 

                                         
0 0

0
0

xx

yy yz

yz zz

I
I I
I I

 
 = − 
 − 

I .                                                          (37) 

The values yyI  and zzI  represent the moments of inertia of the bar cross section about the axis 
Oy and Oz respectively. The coordinate system has the origin in the mass center of the element  
dm Adx= ρ  (ρ - density),  yzI   is the centrifugal moment of inertia and xxI is the inertia moment 
about the axis Ox.  Since we have chosen  y  and  z  as principal directions of inertia  0yzI =  , the 
matrix of moments of inertia become 

                                                           
0 0

0 0
0 0

x

y

z

I
I

I

 
 =  
  

I  ,                                                             (38) 

where, for the sake of simplicity the notations  xx xI I= , yy yI I= , zz zI I=  are made.  
In the following shall be calculated the internal energy stored in the truss:     

                   
2 22 2

2 2
2 2

0 0

1 1d ' ' d
2 2

L L

pb y z y z
d w d vE EI EI x EI EI x
dx dx

    
 = + = β + γ      

     
∫ ∫  .          (39) 

If we introduce the expression of w si v [22] it obtains 

                     ( )'' '' '' ''
, 3 3 2 2 , , , ,

0

1 1
2 2

L
T

pb e i y i j z i j e j e i b ij e jE EI EI dx k
 

= + = 
 
∫δ N N N N δ δ δ ,                   (40) 

where 

                                           ( )'' '' '' ''
, 3 3 2 2

0

d
L

T
b ij y i j z i jk EI EI x= +∫ N N N N .                                        (41) 
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The energy caused by the axial deformation is 

                    
2

, 1 1 , , , ,
0 0

1 d 1 1d ' ' d
2 d 2 2

L L

pa eL i i j eL j e i a ij e j
uE EA x EA x k
x

  = = =  
   

∫ ∫δ N N δ δ δ ,   (42) 

with  

                                                          , 1 1
0

' ' d
L

a ij i jk EA x= ∫N N .                                                       (43) 

The deformation energy due to torsion is 

                  
2

, 4 4 , , , ,
0 0

1 d 1 1d ' ' d
2 d 2 2

L L
T

pt x eL i i j x eL j e i t ij e jE GI x GI x k
x

 α = = =  
   

∫ ∫δ N N δ δ δ ,             (44) 

with 

                                                    , 4 4
0

' ' d
L

t ij i j xk GI x= ∫N N  .                                                           (45)                         

It can be considered the effects of an axial load totP  existing in an axial section of the bar, that 
gives the following energy if, in a first approximation, the axial deformations are neglected 

                                 
2 2

0

1 d d d
2 d d

L

a tot
v wE P x
x x

    = +    
     

∫  ,                           (46) 

where Ptot represents the axial force in the bar cross section at the distance x .  We consider 
that the force components acting at the right bar end are, in the local coordinate system: Px, Py=0, 
Pz=0. With these assumptions, we will determine the components of the inertia forces acting upon 
the portion of the bar between x and L (Fig.2). 

The current point of the bar, with the abscissa x has the acceleration  
                        ( ) 2 2

,1 1, 12 3 13 2 11 2 3 12 1 2 13 1 3( )G o Ga a r r x r r r x = + ε − ε − ω + ω − ω ω − ω ω  .                         (47) 
 

 
Fig. 2. Determination of the axial inertia force. 

 
The inertia force is given by 

( ) 2 2
,1 ,1 , 12 3 13 2 11 2 3 12 1 2 13 1 3d ( ) d

L L L L

i G ox G
x x x x

dm Ads r r s A s r r r s A s = − = − ρ − ε − ε ρ + ω + ω − ω ω − ω ω ρ = ∫ ∫ ∫ ∫F a a                                    
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( ) ( ) ( ) ( )2 2 2 2 2 2
12 3 13 2 11 2 3 12 1 2 13 1 3

1 1 ( )
2 2oX A L x r r A L x r r r L x A = − ρ − − ε − ε ρ − + ω + ω − ω ω − ω ω − ρ 

 /. 

                                 (48) 
We denote with                

( ) 2 2 2 2
12 3 13 2 11 2 3 12 1 2 13 1 3

1 1 ( )
2 2oX AL r r AL r r r AL µ = − ρ − ε − ε ρ + ω + ω − ω ω − ω ω ρ 

 , 

    λ = oX Aρ   ;   ( ) 2 2
12 3 13 2 11 2 3 12 1 2 13 1 3

1 1 ( )
2 2

r r A r r r A ν = ε − ε ρ − ω + ω − ω ω − ω ω ρ  .               (49) 

The  internal energy due to inertia of the mass of bar is 

                     ( )( )2 * * * *
, 3 3 2 2 1 ,

0

1
2

L

a eL i x x x x i j i j eL jE P x x dx
 

= +µ + λ + ν + = 
 
∫δ N N N N δ    

              ( )( )2
, 2 2 3 3 1 , , ,

0

1 1
2 2

L
G

eL i x x x x i j i j eL j e i ij e jP x x dx k
 

= +µ + λ + ν + = 
 
∫δ N N N N δ δ δ  ,                 (50) 

where 

           ( )( )2
2 2 3 3 1

0

d
L

G
ij x x x x i j i jk P x x x= +µ + λ + ν +∫ N N N N  .                             (51) 

The total internal energy is 

( ), , , , , , , ,
1 1
2 2

G
p e i b ij a ij t ij ij e j e i e ij e jE k= + + + =δ k k k k δ δ δ .                       (52)              

where the notation 

                                                , , , ,
G

e ij b ij a ij t ij ijk = + + +k k k k ,                                                            (53) 

is used. The external work of the concentrated loads with the local components ,e iq  applied in the 
nodes is 

   , ,
c

e i e iW = q δ .                                       (54) 
The external work of the distributed loads is 

( )1 2 3 1 2 3
0

d
L

dW p u p v p w m m m x= + + + α + β + γ =∫             

               *
, ( 3), , , ,

0 0

, 1,2,3, 1,12
L L

i ij e j i i j e j e j e jp N dx m N dx q i j+

   
= δ + δ = δ = =   
   
∫ ∫  ,                        (55) 

where the notation  

                    *
, , ( 3), ,

0 0

, 1,2,3, 1,12
L L

e j i ij e j i i j e jq p N dx m N dx i j+

   
= δ + δ = =   
   
∫ ∫ .                            (56) 

is used. The Lagrangian of the element becomes 

         d c
c pL E E W W= − + + .                                                   (57) 
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or, taking into account the rel. (32),(33),(40),(42),(44),(50),(52),(54)-(56)         

( ) ( )1 1 , , 1 1 , , 1
0

1
2

L

ko k ki ij eL j ki ij eL j ko k ki ij eL j ki ij eL jL A X r x r N r N X r x r N r N dx= ρ + + δ + δ + + δ + δ −∫  
 

     

   *
, , , , , , ,

1
2 eL i e ij eL j eL j eL j eL i eL ik q− + δ +δ δ q δ .                                                          (58) 

Applying the Lagrange’s equations [21], written in the form 

                       
,,

0
e ie i

d L L
dt

∂ ∂
− =
∂δ∂δ

.                            (59) 

the motion equations written in the local coordinate system, for one-dimensional finite element, 
take the form 

           ( )2

, , , , , , , ,2e ij eL j e ij eL j e ij e ij e ij eL j
ω ε ω+ + + + =m δ c δ k k k δ   

         
2*

, . , , , , ,
o

e i e i e i e i e ik kj L j e ij joxε ω ε= + − − − −q q q q m I ε m  ,                                   (60) 

where 

         , , ,e ij t ij r ij= +m m m  ,    , 10
, , 1,12, 1,2,3

L

t ij ki kjA dx i j k= ρ = =∫m N N  .;              

    * *
, 3, 3,0

, , 1,2,3, , 1,12
L

r ij k i kl l jdx k l i j+ += ρ = =∫m N I N     ;  ( ), , 1
0

L

e ij ki L km mj Adxω = ρ∫c N ω N , 

                     , , 1
0

L

e ij ki L km mj Adxε = ρ∫k N ε N ,  
2

, , , 1
0

L

e ij ki L km L ml lj Adxω = ω ρ∫k N ω N , 

   , 0
, 1,12, 1,2,3

Lo
e ij jiA dx i j= ρ = =∫m N ,  , , 3 10

L

e ij j i dxε
+= ∫m N ,   T

jo jox X= R 

 , 

                                 , 0

Lx
e ij ji x Adx= ρ∫m N ,   i,j=1,2,3. 

An extended presentation of the motion equations are 

* *
1 , , 1 ,0 0

0

2
L

L L

ik jk ki kl lj eL j ki L km mj eL jA dx dx Adx
  ρ + ρ δ + ρ δ +     

∫ ∫ ∫N N N I N N ω N 

, , 1 , , 1 ,
0 0

L L

e ij ki L km mj ki L km L ml lj eL jk Adx Adx
 

+ + ρ + ω ρ δ = 
 

∫ ∫N ε N N ω N  

( ) ( )2*
, . , , , 3 1 ,0 0

L L

e i e i e i e i j i kj L j ji jodx A dx xε ω
+= + − − − − ρ∫ ∫q q q q N I ε N   .                  (61) 

With the notation above mentioned the concise form (60) is obtained. If the element is 
considered to have a constant cross-section is possible to obtain easy the results and the coefficient 
after polynomial integrations.  
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4. THREE DIMENSIONAL FINITE ELEMENT 

We shall note with v ( , , )o o o oX Y Z    the velocity and with a ( , , )o o o oX Y Z    the acceleration of 
the origin of the local coordinate relative to the global coordinate system OXYZ, to which the  
motion of the whole system will relate. We shall note the angular velocity with ω ( , , )x y zω ω ω  and 

with ε ( , , )x y zε ε ε  the angular acceleration. The multi-body system consisting of several solids, 

these vectors will be different for each solid composing the system. The transformation of a  vector 
from the local system of coordinates into the global system of coordinates occurs by means of a 
matrix of rotation  R . In this section we will follow the results presented in [40].  

The displacement δ (u,v,w) of an arbitrary point M chosen at a distance x from the left end 
of the bar  can be written, using the shape functions ijN  and the vector of the nodal displacements, 

in the local coordinate system 

  1 1 , 2 2 , 3 ,, , , 1,12j e j j e j j e ju N v N w N j= δ = δ = δ = δ = δ = δ = ,           (62) 

or 

                                                , 1,2,3; 1,12i ij e jN i j= δ = =δ  .                                                (63)    

where the nodal displacements vector of the finite element numbered e , eδ , is:  

               [ ]1 1 1 2 2 2
T
e u v w u v wδ =  .                                                           (64) 

Here u,v and w are the displacement of the current point of the element along the three axis 
, ,Ox Oy Oz .   

                                       N  
( )

( )

( )

( )

( )

( )

1

2

3

, 1,2,3; 1,
u

ijv

w

N N

N N N i j p

N N

   
   

 = = = = =     
   
      

 .                            (65) 

The point 1 2 3( , , )M x x x  becomes, after deformation 1 2 3( , , )M x x x′ ′ ′ ′     

    1 1 1 1'x x u x= + = + δ ;  2 2 2 2'x x v x= + = + δ ;  3 3 3 3'x x w x= + = + δ ,                    (66) 

or, with respect to the global coordinate system 

                            1 1 1 1 1 1 1 1 1 ,' i i o i i i i o i i i ij e jX X r X r x r X r x r N= + δ = + + δ = + + δ  ,   

2 2 2 2 2 2 2 2 2 ,' ,i i o i i i i o i i i ij e jX X r X r x r X r x r N= + δ = + + δ = + + δ

 3 3 3 3 3 3 3 3 3 ,' i i o i i i i o i i i ij e jX X r X r x r X r x r N= + δ = + + δ = + + δ ,     

                 1,2,3; 1, 12i j= =  ,                                       (67) 

or 
                                    ,' , 1,3k ko ki i ki ij eL jX X r x r N k= + + δ =  .                                 (68) 

 
The velocity is 
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                               , ,' , 1,3k ko ki i ki ij eL j ki ij eL jX X r x r N r N k= + + δ + δ =
 

  .                                   (69) 

The kinetic energy due to the translation is, in this case  

1 2 3
0

1 ' ' d d d
2

L

ct k kE X X x x x= ρ =∫     

     ( ) ( ), , , , 1 2 3
0

1 d d d .
2

L

ko ki i ki ij eL j ki ij eL j ko ki i ki ij eL j ki ij eL jX r x r N r N X r x r N r N x x x= ρ + + δ + δ + + δ + δ∫  
 

               (70) 

The equations of motion shall be obtained in the local coordinate system but they can also 
be obtained in the global coordinate system. For this purpose, the equations of Lagrange shall be 
used.  The potential energy (internal work) of the elemnt is: 

                          1 d
2p ij ijV

E V= σ ε∫ .                           (71) 

where  σ  represents the stress tensor and  ε  the strains tensor. 
The Hooke law can be written as follows     

                                                                    ij ik kjDσ = ε .                                               (72) 

The differential relations which link the strains to the finite deformations can be expressed in a 
concise form: 

                  kj km mjaε = δ ,                                (73) 

where a  represents the differentiation operator [44]. 
 Using the rel. (72) and (73) it results the strains energy 

             e,ik , ,
1  
2p e im e mlV

E k dV= δ δ∫   ,                            (74) 

where ,e imk  is the stiffness matrix 

           , lne im ji kj lk nmV
k N a D a N dV= ∫ .                            (75) 

For the considered element the Lagrangian will be: 

        c
c pL E E W W= − + +   .                                           (76) 

Applying the equations of Lagrange  

                   0
ee

d L L
dt
   ∂ ∂

− =   ∂δ∂δ   
                                  (77) 

The motion equations are obtained in the form 

           ( )2

, , , , , , , ,2e ij eL j e ij eL j e ij e ij e ij eL j
ω ε ω+ + + + =m δ c δ k k k δ   

                                       
2*

, . , , ,
o

e i e i e i e i e ij joxε ω= + − − −q q q q m   .                                                              

(78) 
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 By
e

L ∂
 ∂δ 

 we understand 

    

1

2

n

L
x
L

L x
X

L
x

∂ 
 ∂
 
∂ 

∂    ∂=   ∂   
 
∂ 

 ∂ 



   where { }

1

2

n

x
x

X

x

 
  =  
 
  



 .                                       (79) 

The matrix coefficients are determined choosing the shape functions and the nodal 
coordinates of a point.  

5. ANALYSIS OF THE MOTION EQUATIONS 

The motion equations for one single finite element finit for an one-dimensional, two-
dimensional or three-dimesnional element is 

                  ( )2

, , , , , , , ,2e ij eL j e ij eL j e ij e ij e ij eL j
ω ε ω+ + + + =m δ c δ k k k δ   

                           
2*

, . , , , , ,/ / o
e i e i e i e i e ik kj L j e ij joxε ω ε= + − − − −q q q q m I ε m   .          

Matrix coefficients involved in these equations are: 
• The inertia tensor ,e ijm , a symmetrical one;  

• The damping tensor ,e ijc  is a skew symmetric tensor and represent accelerations due to 

relative motions of nodal displacements with respect to the mobile reference co-ordinate 
system (Coriolis type acceleration); 

• The rigidity tensor ,e ijk  is symmetric too. 

• The change of the rigidity due to the relative motion of the elastic element 
2

, ,e ij e ij
ε ω+k k . These 

terms can determine singularities of the total rigidity matrix and, as a consequence, loss of 
the stability; 

• The vector of the generalized loads contains, beside external (concentrated and distributed) 
loads, terms due to inertia of finite elements being in rigid motion.  

           The system of differential equations obtained is nonlinear (for some structure of MBS can be 
strong non-linear), the matrix coefficients of the system depending on time. The method mostly 
used to solve a such system is that of linearizing these equations considering the tensor coefficients 
as being constant for very short time intervals (rigid motion freezing). In this case a system of 
differential equations with constant coefficients is obtained, the solving procedures for these 
equations being well known. Nonlinear aspects are due to the “conservative” damping caused by 
the skew symmetric tensor  ijc  and by the modification of the rigidity matrix due to relative 

motions. 
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6. CONCLUSIONS 

Researches dedicated to multibody systems with elastic elements takes place over a period 
of five decades (even if the term multibody system began later). The main outcomes of the 
theoretical and numerical problems implied by this approach have been identified and set out during 
this period. A number of types of finite elements have been proposed to study the problem and a 
number of applications - usually very simple - have been solved. The modeling of systems and the 
achievement of motion equations is a stage already studied by researchers and reinforced by 
numerous published articles. However, the practical application of the calculation methods was 
made mostly on simple systems with a low degree of complexity. The main problem with 
unpleasant practical effects is the loss of stability and the occurrence of resonance phenomena. 
Changing element lengths due to elasticity and vibrations may also result in poor operation of a 
system or machine and may make it unnecessary for the purpose for which it was designed and 
built. A dificulty remains the high degree of complexity of solving a multibody system, which has a 
rigid motion, over which a movement determined by the elasticity of the elements overlaps. The 
Coriolis effects and complex relative motion in multibody systems modify the classic (well known) 
motion equations in the case of a finite element analysis. The most important problem, open to the 
study, is to find ways to make it possible to integrate motion equations and to quickly get 
conclusions about the behavior of such a system. 
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